Spaces:
Running
Running
File size: 7,546 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
from cassandra.cluster import ResponseFuture
from cassio.table.cql import DELETE_CQL_TEMPLATE, SELECT_CQL_TEMPLATE, CQLOpType
from cassio.table.table_types import ColumnSpecType, RowType, normalize_type_desc
from cassio.table.utils import (
call_wrapped_async,
handle_multicolumn_packing,
handle_multicolumn_unpacking,
)
from .base_table import BaseTableMixin
PARTITION_ID_TYPE = Union[Any, Tuple[Any]]
class ClusteredMixin(BaseTableMixin):
def __init__(
self,
*pargs: Any,
partition_id_type: Union[str, List[str]] = ["TEXT"],
partition_id: Optional[PARTITION_ID_TYPE] = None,
ordering_in_partition: Union[str, List[str]] = "ASC",
**kwargs: Any,
) -> None:
self.partition_id_type = normalize_type_desc(partition_id_type)
self.partition_id = partition_id
if isinstance(ordering_in_partition, str):
self.ordering_in_partition = ordering_in_partition.upper()
else:
self.ordering_in_partition = [
ordering.upper() for ordering in ordering_in_partition
]
super().__init__(*pargs, **kwargs)
def _schema_pk(self) -> List[ColumnSpecType]:
if len(self.partition_id_type) == 1:
return [
("partition_id", self.partition_id_type[0]),
]
else:
return [
(f"partition_id_{pk_i}", pk_typ)
for pk_i, pk_typ in enumerate(self.partition_id_type)
]
def _schema_cc(self) -> List[ColumnSpecType]:
return self._schema_row_id()
def _delete_partition(
self, is_async: bool, partition_id: Optional[PARTITION_ID_TYPE] = None
) -> Union[None, ResponseFuture]:
_partition_id = self.partition_id if partition_id is None else partition_id
#
_pid_dict = handle_multicolumn_unpacking(
{"partition_id": _partition_id},
"partition_id",
[col for col, _ in self._schema_pk()],
)
(
rest_kwargs,
where_clause_blocks,
delete_cql_vals,
) = self._extract_where_clause_blocks(_pid_dict)
assert rest_kwargs == {}
where_clause = "WHERE " + " AND ".join(where_clause_blocks)
delete_cql = DELETE_CQL_TEMPLATE.format(
where_clause=where_clause,
)
if is_async:
return self.execute_cql_async(
delete_cql, args=delete_cql_vals, op_type=CQLOpType.WRITE
)
else:
self.execute_cql(delete_cql, args=delete_cql_vals, op_type=CQLOpType.WRITE)
return None
def delete_partition(
self, partition_id: Optional[PARTITION_ID_TYPE] = None
) -> None:
self._delete_partition(is_async=False, partition_id=partition_id)
return None
def delete_partition_async(
self, partition_id: Optional[PARTITION_ID_TYPE] = None
) -> ResponseFuture:
return self._delete_partition(is_async=True, partition_id=partition_id)
async def adelete_partition(
self, partition_id: Optional[PARTITION_ID_TYPE] = None
) -> None:
await call_wrapped_async(self.delete_partition_async, partition_id=partition_id)
def _normalize_kwargs(self, args_dict: Dict[str, Any]) -> Dict[str, Any]:
# if partition id provided in call, takes precedence over instance value
arg_pid = args_dict.get("partition_id")
instance_pid = self.partition_id
_partition_id = instance_pid if arg_pid is None else arg_pid
new_args_dict0 = {
**{"partition_id": _partition_id},
**args_dict,
}
# in case of multicolumn-key schema, do the tuple unpacking:
new_args_dict = handle_multicolumn_unpacking(
new_args_dict0,
"partition_id",
[col for col, _ in self._schema_pk()],
)
return super()._normalize_kwargs(new_args_dict)
def _normalize_row(self, raw_row: Any) -> Dict[str, Any]:
pre_normalized = super()._normalize_row(raw_row)
repacked_row = handle_multicolumn_packing(
unpacked_row=pre_normalized,
key_name="partition_id",
unpacked_keys=[col for col, _ in self._schema_pk()],
)
return repacked_row
def _get_get_partition_cql(
self,
partition_id: Optional[PARTITION_ID_TYPE] = None,
n: Optional[int] = None,
**kwargs: Any,
) -> Tuple[str, Tuple[Any, ...]]:
_partition_id = self.partition_id if partition_id is None else partition_id
#
# TODO: work on a columns: Optional[List[str]] = None
# (but with nuanced handling of the column-magic we have here)
columns = None
if columns is None:
columns_desc = "*"
else:
# TODO: handle translations here?
# columns_desc = ", ".join(columns)
raise NotImplementedError("Column selection is not implemented.")
# WHERE can admit other sources (e.g. medata if the corresponding mixin)
# so we escalate to standard WHERE-creation route and reinject the partition
n_kwargs = self._normalize_kwargs(
{
**{"partition_id": _partition_id},
**kwargs,
}
)
(
rest_kwargs,
where_clause_blocks,
select_cql_vals,
) = self._extract_where_clause_blocks(n_kwargs)
# check for exhaustion:
assert rest_kwargs == {}
where_clause = "WHERE " + " AND ".join(where_clause_blocks)
where_cql_vals = list(select_cql_vals)
#
if n is None:
limit_clause = ""
limit_cql_vals = []
else:
limit_clause = "LIMIT %s"
limit_cql_vals = [n]
#
select_cql = SELECT_CQL_TEMPLATE.format(
columns_desc=columns_desc,
where_clause=where_clause,
limit_clause=limit_clause,
)
get_p_cql_vals = tuple(where_cql_vals + limit_cql_vals)
return select_cql, get_p_cql_vals
def get_partition(
self,
partition_id: Optional[PARTITION_ID_TYPE] = None,
n: Optional[int] = None,
**kwargs: Any,
) -> Iterable[RowType]:
select_cql, get_p_cql_vals = self._get_get_partition_cql(
partition_id, n, **kwargs
)
return (
self._normalize_row(raw_row)
for raw_row in self.execute_cql(
select_cql,
args=get_p_cql_vals,
op_type=CQLOpType.READ,
)
)
def get_partition_async(
self,
partition_id: Optional[PARTITION_ID_TYPE] = None,
n: Optional[int] = None,
**kwargs: Any,
) -> ResponseFuture:
raise NotImplementedError("Asynchronous reads are not supported.")
async def aget_partition(
self,
partition_id: Optional[PARTITION_ID_TYPE] = None,
n: Optional[int] = None,
**kwargs: Any,
) -> Iterable[RowType]:
select_cql, get_p_cql_vals = self._get_get_partition_cql(
partition_id, n, **kwargs
)
return (
self._normalize_row(raw_row)
for raw_row in await self.aexecute_cql(
select_cql,
args=get_p_cql_vals,
op_type=CQLOpType.READ,
)
)
|