File size: 3,004 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright DataStax, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import Any, Dict, Iterable, Optional, Union


DocumentType = Dict[str, Any]
ProjectionType = Union[Iterable[str], Dict[str, bool]]
SortType = Dict[str, Any]
FilterType = Dict[str, Any]
VectorType = Iterable[float]


def normalize_optional_projection(
    projection: Optional[ProjectionType],
    ensure_fields: Iterable[str] = set(),
) -> Optional[Dict[str, bool]]:
    _ensure_fields = set(ensure_fields)
    if projection:
        if isinstance(projection, dict):
            if any(bool(v) for v in projection.values()):
                # positive projection: {a: True, b: True ...}
                return {
                    k: projection.get(k, True)
                    for k in list(projection.keys()) + list(_ensure_fields)
                }
            else:
                # negative projection: {x: False, y: False, ...}
                return {k: v for k, v in projection.items() if k not in _ensure_fields}
        else:
            # an iterable over strings
            return {field: True for field in list(projection) + list(_ensure_fields)}
    else:
        return None


class ReturnDocument:
    """
    Admitted values for the `return_document` parameter in
    `find_one_and_replace` and `find_one_and_update` collection
    methods.
    """

    def __init__(self) -> None:
        raise NotImplementedError

    BEFORE = "before"
    AFTER = "after"


class SortDocuments:
    """
    Admitted values for the `sort` parameter in the find collection methods,
    e.g. `sort={"field": SortDocuments.ASCENDING}`.
    """

    def __init__(self) -> None:
        raise NotImplementedError

    ASCENDING = 1
    DESCENDING = -1


class VectorMetric:
    """
    Admitted values for the "metric" parameter when creating vector collections
    through the database `create_collection` method.
    """

    def __init__(self) -> None:
        raise NotImplementedError

    DOT_PRODUCT = "dot_product"
    EUCLIDEAN = "euclidean"
    COSINE = "cosine"


class DefaultIdType:
    """
    Admitted values for the "default_id_type" parameter when creating collections
    through the database `create_collection` method.
    """

    def __init__(self) -> None:
        raise NotImplementedError

    UUID = "uuid"
    OBJECTID = "objectId"
    UUIDV6 = "uuidv6"
    UUIDV7 = "uuidv7"
    DEFAULT = "uuid"


__pdoc__ = {
    "normalize_optional_projection": False,
}