Spaces:
Running
Running
File size: 27,776 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
"""
Utility routines
"""
from collections.abc import Mapping, MutableMapping
from copy import deepcopy
import json
import itertools
import re
import sys
import traceback
import warnings
from typing import (
Callable,
TypeVar,
Any,
Union,
Dict,
Optional,
Tuple,
Sequence,
Type,
cast,
)
from types import ModuleType
import jsonschema
import pandas as pd
import numpy as np
from pandas.api.types import infer_dtype
from altair.utils.schemapi import SchemaBase
from altair.utils._dfi_types import Column, DtypeKind, DataFrame as DfiDataFrame
if sys.version_info >= (3, 10):
from typing import ParamSpec
else:
from typing_extensions import ParamSpec
from typing import Literal, Protocol, TYPE_CHECKING, runtime_checkable
if TYPE_CHECKING:
from pandas.core.interchange.dataframe_protocol import Column as PandasColumn
V = TypeVar("V")
P = ParamSpec("P")
@runtime_checkable
class DataFrameLike(Protocol):
def __dataframe__(
self, nan_as_null: bool = False, allow_copy: bool = True
) -> DfiDataFrame: ...
TYPECODE_MAP = {
"ordinal": "O",
"nominal": "N",
"quantitative": "Q",
"temporal": "T",
"geojson": "G",
}
INV_TYPECODE_MAP = {v: k for k, v in TYPECODE_MAP.items()}
# aggregates from vega-lite version 4.6.0
AGGREGATES = [
"argmax",
"argmin",
"average",
"count",
"distinct",
"max",
"mean",
"median",
"min",
"missing",
"product",
"q1",
"q3",
"ci0",
"ci1",
"stderr",
"stdev",
"stdevp",
"sum",
"valid",
"values",
"variance",
"variancep",
"exponential",
"exponentialb",
]
# window aggregates from vega-lite version 4.6.0
WINDOW_AGGREGATES = [
"row_number",
"rank",
"dense_rank",
"percent_rank",
"cume_dist",
"ntile",
"lag",
"lead",
"first_value",
"last_value",
"nth_value",
]
# timeUnits from vega-lite version 4.17.0
TIMEUNITS = [
"year",
"quarter",
"month",
"week",
"day",
"dayofyear",
"date",
"hours",
"minutes",
"seconds",
"milliseconds",
"yearquarter",
"yearquartermonth",
"yearmonth",
"yearmonthdate",
"yearmonthdatehours",
"yearmonthdatehoursminutes",
"yearmonthdatehoursminutesseconds",
"yearweek",
"yearweekday",
"yearweekdayhours",
"yearweekdayhoursminutes",
"yearweekdayhoursminutesseconds",
"yeardayofyear",
"quartermonth",
"monthdate",
"monthdatehours",
"monthdatehoursminutes",
"monthdatehoursminutesseconds",
"weekday",
"weeksdayhours",
"weekdayhours",
"weekdayhoursminutes",
"weekdayhoursminutesseconds",
"dayhours",
"dayhoursminutes",
"dayhoursminutesseconds",
"hoursminutes",
"hoursminutesseconds",
"minutesseconds",
"secondsmilliseconds",
"utcyear",
"utcquarter",
"utcmonth",
"utcweek",
"utcday",
"utcdayofyear",
"utcdate",
"utchours",
"utcminutes",
"utcseconds",
"utcmilliseconds",
"utcyearquarter",
"utcyearquartermonth",
"utcyearmonth",
"utcyearmonthdate",
"utcyearmonthdatehours",
"utcyearmonthdatehoursminutes",
"utcyearmonthdatehoursminutesseconds",
"utcyearweek",
"utcyearweekday",
"utcyearweekdayhours",
"utcyearweekdayhoursminutes",
"utcyearweekdayhoursminutesseconds",
"utcyeardayofyear",
"utcquartermonth",
"utcmonthdate",
"utcmonthdatehours",
"utcmonthdatehoursminutes",
"utcmonthdatehoursminutesseconds",
"utcweekday",
"utcweeksdayhours",
"utcweekdayhoursminutes",
"utcweekdayhoursminutesseconds",
"utcdayhours",
"utcdayhoursminutes",
"utcdayhoursminutesseconds",
"utchoursminutes",
"utchoursminutesseconds",
"utcminutesseconds",
"utcsecondsmilliseconds",
]
InferredVegaLiteType = Literal["ordinal", "nominal", "quantitative", "temporal"]
def infer_vegalite_type(
data: object,
) -> Union[InferredVegaLiteType, Tuple[InferredVegaLiteType, list]]:
"""
From an array-like input, infer the correct vega typecode
('ordinal', 'nominal', 'quantitative', or 'temporal')
Parameters
----------
data: object
"""
typ = infer_dtype(data, skipna=False)
if typ in [
"floating",
"mixed-integer-float",
"integer",
"mixed-integer",
"complex",
]:
return "quantitative"
elif typ == "categorical" and hasattr(data, "cat") and data.cat.ordered:
return ("ordinal", data.cat.categories.tolist())
elif typ in ["string", "bytes", "categorical", "boolean", "mixed", "unicode"]:
return "nominal"
elif typ in [
"datetime",
"datetime64",
"timedelta",
"timedelta64",
"date",
"time",
"period",
]:
return "temporal"
else:
warnings.warn(
"I don't know how to infer vegalite type from '{}'. "
"Defaulting to nominal.".format(typ),
stacklevel=1,
)
return "nominal"
def merge_props_geom(feat: dict) -> dict:
"""
Merge properties with geometry
* Overwrites 'type' and 'geometry' entries if existing
"""
geom = {k: feat[k] for k in ("type", "geometry")}
try:
feat["properties"].update(geom)
props_geom = feat["properties"]
except (AttributeError, KeyError):
# AttributeError when 'properties' equals None
# KeyError when 'properties' is non-existing
props_geom = geom
return props_geom
def sanitize_geo_interface(geo: MutableMapping) -> dict:
"""Santize a geo_interface to prepare it for serialization.
* Make a copy
* Convert type array or _Array to list
* Convert tuples to lists (using json.loads/dumps)
* Merge properties with geometry
"""
geo = deepcopy(geo)
# convert type _Array or array to list
for key in geo.keys():
if str(type(geo[key]).__name__).startswith(("_Array", "array")):
geo[key] = geo[key].tolist()
# convert (nested) tuples to lists
geo_dct: dict = json.loads(json.dumps(geo))
# sanitize features
if geo_dct["type"] == "FeatureCollection":
geo_dct = geo_dct["features"]
if len(geo_dct) > 0:
for idx, feat in enumerate(geo_dct):
geo_dct[idx] = merge_props_geom(feat)
elif geo_dct["type"] == "Feature":
geo_dct = merge_props_geom(geo_dct)
else:
geo_dct = {"type": "Feature", "geometry": geo_dct}
return geo_dct
def numpy_is_subtype(dtype: Any, subtype: Any) -> bool:
try:
return np.issubdtype(dtype, subtype)
except (NotImplementedError, TypeError):
return False
def sanitize_dataframe(df: pd.DataFrame) -> pd.DataFrame: # noqa: C901
"""Sanitize a DataFrame to prepare it for serialization.
* Make a copy
* Convert RangeIndex columns to strings
* Raise ValueError if column names are not strings
* Raise ValueError if it has a hierarchical index.
* Convert categoricals to strings.
* Convert np.bool_ dtypes to Python bool objects
* Convert np.int dtypes to Python int objects
* Convert floats to objects and replace NaNs/infs with None.
* Convert DateTime dtypes into appropriate string representations
* Convert Nullable integers to objects and replace NaN with None
* Convert Nullable boolean to objects and replace NaN with None
* convert dedicated string column to objects and replace NaN with None
* Raise a ValueError for TimeDelta dtypes
"""
df = df.copy()
if isinstance(df.columns, pd.RangeIndex):
df.columns = df.columns.astype(str)
for col_name in df.columns:
if not isinstance(col_name, str):
raise ValueError(
"Dataframe contains invalid column name: {0!r}. "
"Column names must be strings".format(col_name)
)
if isinstance(df.index, pd.MultiIndex):
raise ValueError("Hierarchical indices not supported")
if isinstance(df.columns, pd.MultiIndex):
raise ValueError("Hierarchical indices not supported")
def to_list_if_array(val):
if isinstance(val, np.ndarray):
return val.tolist()
else:
return val
for dtype_item in df.dtypes.items():
# We know that the column names are strings from the isinstance check
# further above but mypy thinks it is of type Hashable and therefore does not
# let us assign it to the col_name variable which is already of type str.
col_name = cast(str, dtype_item[0])
dtype = dtype_item[1]
dtype_name = str(dtype)
if dtype_name == "category":
# Work around bug in to_json for categorical types in older versions
# of pandas as they do not properly convert NaN values to null in to_json.
# We can probably remove this part once we require pandas >= 1.0
col = df[col_name].astype(object)
df[col_name] = col.where(col.notnull(), None)
elif dtype_name == "string":
# dedicated string datatype (since 1.0)
# https://pandas.pydata.org/pandas-docs/version/1.0.0/whatsnew/v1.0.0.html#dedicated-string-data-type
col = df[col_name].astype(object)
df[col_name] = col.where(col.notnull(), None)
elif dtype_name == "bool":
# convert numpy bools to objects; np.bool is not JSON serializable
df[col_name] = df[col_name].astype(object)
elif dtype_name == "boolean":
# dedicated boolean datatype (since 1.0)
# https://pandas.io/docs/user_guide/boolean.html
col = df[col_name].astype(object)
df[col_name] = col.where(col.notnull(), None)
elif dtype_name.startswith("datetime") or dtype_name.startswith("timestamp"):
# Convert datetimes to strings. This needs to be a full ISO string
# with time, which is why we cannot use ``col.astype(str)``.
# This is because Javascript parses date-only times in UTC, but
# parses full ISO-8601 dates as local time, and dates in Vega and
# Vega-Lite are displayed in local time by default.
# (see https://github.com/altair-viz/altair/issues/1027)
df[col_name] = (
df[col_name].apply(lambda x: x.isoformat()).replace("NaT", "")
)
elif dtype_name.startswith("timedelta"):
raise ValueError(
'Field "{col_name}" has type "{dtype}" which is '
"not supported by Altair. Please convert to "
"either a timestamp or a numerical value."
"".format(col_name=col_name, dtype=dtype)
)
elif dtype_name.startswith("geometry"):
# geopandas >=0.6.1 uses the dtype geometry. Continue here
# otherwise it will give an error on np.issubdtype(dtype, np.integer)
continue
elif (
dtype_name
in {
"Int8",
"Int16",
"Int32",
"Int64",
"UInt8",
"UInt16",
"UInt32",
"UInt64",
"Float32",
"Float64",
}
): # nullable integer datatypes (since 24.0) and nullable float datatypes (since 1.2.0)
# https://pandas.pydata.org/pandas-docs/version/0.25/whatsnew/v0.24.0.html#optional-integer-na-support
col = df[col_name].astype(object)
df[col_name] = col.where(col.notnull(), None)
elif numpy_is_subtype(dtype, np.integer):
# convert integers to objects; np.int is not JSON serializable
df[col_name] = df[col_name].astype(object)
elif numpy_is_subtype(dtype, np.floating):
# For floats, convert to Python float: np.float is not JSON serializable
# Also convert NaN/inf values to null, as they are not JSON serializable
col = df[col_name]
bad_values = col.isnull() | np.isinf(col)
df[col_name] = col.astype(object).where(~bad_values, None)
elif dtype == object:
# Convert numpy arrays saved as objects to lists
# Arrays are not JSON serializable
col = df[col_name].astype(object).apply(to_list_if_array)
df[col_name] = col.where(col.notnull(), None)
return df
def sanitize_arrow_table(pa_table):
"""Sanitize arrow table for JSON serialization"""
import pyarrow as pa
import pyarrow.compute as pc
arrays = []
schema = pa_table.schema
for name in schema.names:
array = pa_table[name]
dtype_name = str(schema.field(name).type)
if dtype_name.startswith("timestamp") or dtype_name.startswith("date"):
arrays.append(pc.strftime(array))
elif dtype_name.startswith("duration"):
raise ValueError(
'Field "{col_name}" has type "{dtype}" which is '
"not supported by Altair. Please convert to "
"either a timestamp or a numerical value."
"".format(col_name=name, dtype=dtype_name)
)
else:
arrays.append(array)
return pa.Table.from_arrays(arrays, names=schema.names)
def parse_shorthand(
shorthand: Union[Dict[str, Any], str],
data: Optional[Union[pd.DataFrame, DataFrameLike]] = None,
parse_aggregates: bool = True,
parse_window_ops: bool = False,
parse_timeunits: bool = True,
parse_types: bool = True,
) -> Dict[str, Any]:
"""General tool to parse shorthand values
These are of the form:
- "col_name"
- "col_name:O"
- "average(col_name)"
- "average(col_name):O"
Optionally, a dataframe may be supplied, from which the type
will be inferred if not specified in the shorthand.
Parameters
----------
shorthand : dict or string
The shorthand representation to be parsed
data : DataFrame, optional
If specified and of type DataFrame, then use these values to infer the
column type if not provided by the shorthand.
parse_aggregates : boolean
If True (default), then parse aggregate functions within the shorthand.
parse_window_ops : boolean
If True then parse window operations within the shorthand (default:False)
parse_timeunits : boolean
If True (default), then parse timeUnits from within the shorthand
parse_types : boolean
If True (default), then parse typecodes within the shorthand
Returns
-------
attrs : dict
a dictionary of attributes extracted from the shorthand
Examples
--------
>>> data = pd.DataFrame({'foo': ['A', 'B', 'A', 'B'],
... 'bar': [1, 2, 3, 4]})
>>> parse_shorthand('name') == {'field': 'name'}
True
>>> parse_shorthand('name:Q') == {'field': 'name', 'type': 'quantitative'}
True
>>> parse_shorthand('average(col)') == {'aggregate': 'average', 'field': 'col'}
True
>>> parse_shorthand('foo:O') == {'field': 'foo', 'type': 'ordinal'}
True
>>> parse_shorthand('min(foo):Q') == {'aggregate': 'min', 'field': 'foo', 'type': 'quantitative'}
True
>>> parse_shorthand('month(col)') == {'field': 'col', 'timeUnit': 'month', 'type': 'temporal'}
True
>>> parse_shorthand('year(col):O') == {'field': 'col', 'timeUnit': 'year', 'type': 'ordinal'}
True
>>> parse_shorthand('foo', data) == {'field': 'foo', 'type': 'nominal'}
True
>>> parse_shorthand('bar', data) == {'field': 'bar', 'type': 'quantitative'}
True
>>> parse_shorthand('bar:O', data) == {'field': 'bar', 'type': 'ordinal'}
True
>>> parse_shorthand('sum(bar)', data) == {'aggregate': 'sum', 'field': 'bar', 'type': 'quantitative'}
True
>>> parse_shorthand('count()', data) == {'aggregate': 'count', 'type': 'quantitative'}
True
"""
from altair.utils._importers import pyarrow_available
if not shorthand:
return {}
valid_typecodes = list(TYPECODE_MAP) + list(INV_TYPECODE_MAP)
units = {
"field": "(?P<field>.*)",
"type": "(?P<type>{})".format("|".join(valid_typecodes)),
"agg_count": "(?P<aggregate>count)",
"op_count": "(?P<op>count)",
"aggregate": "(?P<aggregate>{})".format("|".join(AGGREGATES)),
"window_op": "(?P<op>{})".format("|".join(AGGREGATES + WINDOW_AGGREGATES)),
"timeUnit": "(?P<timeUnit>{})".format("|".join(TIMEUNITS)),
}
patterns = []
if parse_aggregates:
patterns.extend([r"{agg_count}\(\)"])
patterns.extend([r"{aggregate}\({field}\)"])
if parse_window_ops:
patterns.extend([r"{op_count}\(\)"])
patterns.extend([r"{window_op}\({field}\)"])
if parse_timeunits:
patterns.extend([r"{timeUnit}\({field}\)"])
patterns.extend([r"{field}"])
if parse_types:
patterns = list(itertools.chain(*((p + ":{type}", p) for p in patterns)))
regexps = (
re.compile(r"\A" + p.format(**units) + r"\Z", re.DOTALL) for p in patterns
)
# find matches depending on valid fields passed
if isinstance(shorthand, dict):
attrs = shorthand
else:
attrs = next(
exp.match(shorthand).groupdict() # type: ignore[union-attr]
for exp in regexps
if exp.match(shorthand) is not None
)
# Handle short form of the type expression
if "type" in attrs:
attrs["type"] = INV_TYPECODE_MAP.get(attrs["type"], attrs["type"])
# counts are quantitative by default
if attrs == {"aggregate": "count"}:
attrs["type"] = "quantitative"
# times are temporal by default
if "timeUnit" in attrs and "type" not in attrs:
attrs["type"] = "temporal"
# if data is specified and type is not, infer type from data
if "type" not in attrs:
if pyarrow_available() and data is not None and isinstance(data, DataFrameLike):
dfi = data.__dataframe__()
if "field" in attrs:
unescaped_field = attrs["field"].replace("\\", "")
if unescaped_field in dfi.column_names():
column = dfi.get_column_by_name(unescaped_field)
try:
attrs["type"] = infer_vegalite_type_for_dfi_column(column)
except (NotImplementedError, AttributeError, ValueError):
# Fall back to pandas-based inference.
# Note: The AttributeError catch is a workaround for
# https://github.com/pandas-dev/pandas/issues/55332
if isinstance(data, pd.DataFrame):
attrs["type"] = infer_vegalite_type(data[unescaped_field])
else:
raise
if isinstance(attrs["type"], tuple):
attrs["sort"] = attrs["type"][1]
attrs["type"] = attrs["type"][0]
elif isinstance(data, pd.DataFrame):
# Fallback if pyarrow is not installed or if pandas is older than 1.5
#
# Remove escape sequences so that types can be inferred for columns with special characters
if "field" in attrs and attrs["field"].replace("\\", "") in data.columns:
attrs["type"] = infer_vegalite_type(
data[attrs["field"].replace("\\", "")]
)
# ordered categorical dataframe columns return the type and sort order as a tuple
if isinstance(attrs["type"], tuple):
attrs["sort"] = attrs["type"][1]
attrs["type"] = attrs["type"][0]
# If an unescaped colon is still present, it's often due to an incorrect data type specification
# but could also be due to using a column name with ":" in it.
if (
"field" in attrs
and ":" in attrs["field"]
and attrs["field"][attrs["field"].rfind(":") - 1] != "\\"
):
raise ValueError(
'"{}" '.format(attrs["field"].split(":")[-1])
+ "is not one of the valid encoding data types: {}.".format(
", ".join(TYPECODE_MAP.values())
)
+ "\nFor more details, see https://altair-viz.github.io/user_guide/encodings/index.html#encoding-data-types. "
+ "If you are trying to use a column name that contains a colon, "
+ 'prefix it with a backslash; for example "column\\:name" instead of "column:name".'
)
return attrs
def infer_vegalite_type_for_dfi_column(
column: Union[Column, "PandasColumn"],
) -> Union[InferredVegaLiteType, Tuple[InferredVegaLiteType, list]]:
from pyarrow.interchange.from_dataframe import column_to_array
try:
kind = column.dtype[0]
except NotImplementedError as e:
# Edge case hack:
# dtype access fails for pandas column with datetime64[ns, UTC] type,
# but all we need to know is that its temporal, so check the
# error message for the presence of datetime64.
#
# See https://github.com/pandas-dev/pandas/issues/54239
if "datetime64" in e.args[0] or "timestamp" in e.args[0]:
return "temporal"
raise e
if (
kind == DtypeKind.CATEGORICAL
and column.describe_categorical["is_ordered"]
and column.describe_categorical["categories"] is not None
):
# Treat ordered categorical column as Vega-Lite ordinal
categories_column = column.describe_categorical["categories"]
categories_array = column_to_array(categories_column)
return "ordinal", categories_array.to_pylist()
if kind in (DtypeKind.STRING, DtypeKind.CATEGORICAL, DtypeKind.BOOL):
return "nominal"
elif kind in (DtypeKind.INT, DtypeKind.UINT, DtypeKind.FLOAT):
return "quantitative"
elif kind == DtypeKind.DATETIME:
return "temporal"
else:
raise ValueError(f"Unexpected DtypeKind: {kind}")
def use_signature(Obj: Callable[P, Any]):
"""Apply call signature and documentation of Obj to the decorated method"""
def decorate(f: Callable[..., V]) -> Callable[P, V]:
# call-signature of f is exposed via __wrapped__.
# we want it to mimic Obj.__init__
f.__wrapped__ = Obj.__init__ # type: ignore
f._uses_signature = Obj # type: ignore
# Supplement the docstring of f with information from Obj
if Obj.__doc__:
# Patch in a reference to the class this docstring is copied from,
# to generate a hyperlink.
doclines = Obj.__doc__.splitlines()
doclines[0] = f"Refer to :class:`{Obj.__name__}`"
if f.__doc__:
doc = f.__doc__ + "\n".join(doclines[1:])
else:
doc = "\n".join(doclines)
try:
f.__doc__ = doc
except AttributeError:
# __doc__ is not modifiable for classes in Python < 3.3
pass
return f
return decorate
def update_nested(
original: MutableMapping, update: Mapping, copy: bool = False
) -> MutableMapping:
"""Update nested dictionaries
Parameters
----------
original : MutableMapping
the original (nested) dictionary, which will be updated in-place
update : Mapping
the nested dictionary of updates
copy : bool, default False
if True, then copy the original dictionary rather than modifying it
Returns
-------
original : MutableMapping
a reference to the (modified) original dict
Examples
--------
>>> original = {'x': {'b': 2, 'c': 4}}
>>> update = {'x': {'b': 5, 'd': 6}, 'y': 40}
>>> update_nested(original, update) # doctest: +SKIP
{'x': {'b': 5, 'c': 4, 'd': 6}, 'y': 40}
>>> original # doctest: +SKIP
{'x': {'b': 5, 'c': 4, 'd': 6}, 'y': 40}
"""
if copy:
original = deepcopy(original)
for key, val in update.items():
if isinstance(val, Mapping):
orig_val = original.get(key, {})
if isinstance(orig_val, MutableMapping):
original[key] = update_nested(orig_val, val)
else:
original[key] = val
else:
original[key] = val
return original
def display_traceback(in_ipython: bool = True):
exc_info = sys.exc_info()
if in_ipython:
from IPython.core.getipython import get_ipython
ip = get_ipython()
else:
ip = None
if ip is not None:
ip.showtraceback(exc_info)
else:
traceback.print_exception(*exc_info)
def infer_encoding_types(args: Sequence, kwargs: MutableMapping, channels: ModuleType):
"""Infer typed keyword arguments for args and kwargs
Parameters
----------
args : Sequence
Sequence of function args
kwargs : MutableMapping
Dict of function kwargs
channels : ModuleType
The module containing all altair encoding channel classes.
Returns
-------
kwargs : dict
All args and kwargs in a single dict, with keys and types
based on the channels mapping.
"""
# Construct a dictionary of channel type to encoding name
# TODO: cache this somehow?
channel_objs = (getattr(channels, name) for name in dir(channels))
channel_objs = (
c for c in channel_objs if isinstance(c, type) and issubclass(c, SchemaBase)
)
channel_to_name: Dict[Type[SchemaBase], str] = {
c: c._encoding_name for c in channel_objs
}
name_to_channel: Dict[str, Dict[str, Type[SchemaBase]]] = {}
for chan, name in channel_to_name.items():
chans = name_to_channel.setdefault(name, {})
if chan.__name__.endswith("Datum"):
key = "datum"
elif chan.__name__.endswith("Value"):
key = "value"
else:
key = "field"
chans[key] = chan
# First use the mapping to convert args to kwargs based on their types.
for arg in args:
if isinstance(arg, (list, tuple)) and len(arg) > 0:
type_ = type(arg[0])
else:
type_ = type(arg)
encoding = channel_to_name.get(type_, None)
if encoding is None:
raise NotImplementedError("positional of type {}" "".format(type_))
if encoding in kwargs:
raise ValueError("encoding {} specified twice.".format(encoding))
kwargs[encoding] = arg
def _wrap_in_channel_class(obj, encoding):
if isinstance(obj, SchemaBase):
return obj
if isinstance(obj, str):
obj = {"shorthand": obj}
if isinstance(obj, (list, tuple)):
return [_wrap_in_channel_class(subobj, encoding) for subobj in obj]
if encoding not in name_to_channel:
warnings.warn(
"Unrecognized encoding channel '{}'".format(encoding), stacklevel=1
)
return obj
classes = name_to_channel[encoding]
cls = classes["value"] if "value" in obj else classes["field"]
try:
# Don't force validation here; some objects won't be valid until
# they're created in the context of a chart.
return cls.from_dict(obj, validate=False)
except jsonschema.ValidationError:
# our attempts at finding the correct class have failed
return obj
return {
encoding: _wrap_in_channel_class(obj, encoding)
for encoding, obj in kwargs.items()
}
|