Spaces:
Running
Running
File size: 8,205 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from toolz import curried
import uuid
from weakref import WeakValueDictionary
from typing import (
Union,
Dict,
Set,
MutableMapping,
TypedDict,
Final,
TYPE_CHECKING,
)
from altair.utils._importers import import_vegafusion
from altair.utils.core import DataFrameLike
from altair.utils.data import DataType, ToValuesReturnType, MaxRowsError
from altair.vegalite.data import default_data_transformer
if TYPE_CHECKING:
from vegafusion.runtime import ChartState # type: ignore
# Temporary storage for dataframes that have been extracted
# from charts by the vegafusion data transformer. Use a WeakValueDictionary
# rather than a dict so that the Python interpreter is free to garbage
# collect the stored DataFrames.
extracted_inline_tables: MutableMapping[str, DataFrameLike] = WeakValueDictionary()
# Special URL prefix that VegaFusion uses to denote that a
# dataset in a Vega spec corresponds to an entry in the `inline_datasets`
# kwarg of vf.runtime.pre_transform_spec().
VEGAFUSION_PREFIX: Final = "vegafusion+dataset://"
class _ToVegaFusionReturnUrlDict(TypedDict):
url: str
@curried.curry
def vegafusion_data_transformer(
data: DataType, max_rows: int = 100000
) -> Union[_ToVegaFusionReturnUrlDict, ToValuesReturnType]:
"""VegaFusion Data Transformer"""
if hasattr(data, "__geo_interface__"):
# Use default transformer for geo interface objects
# # (e.g. a geopandas GeoDataFrame)
return default_data_transformer(data)
elif isinstance(data, DataFrameLike):
table_name = f"table_{uuid.uuid4()}".replace("-", "_")
extracted_inline_tables[table_name] = data
return {"url": VEGAFUSION_PREFIX + table_name}
else:
# Use default transformer if we don't recognize data type
return default_data_transformer(data)
def get_inline_table_names(vega_spec: dict) -> Set[str]:
"""Get a set of the inline datasets names in the provided Vega spec
Inline datasets are encoded as URLs that start with the table://
prefix.
Parameters
----------
vega_spec: dict
A Vega specification dict
Returns
-------
set of str
Set of the names of the inline datasets that are referenced
in the specification.
Examples
--------
>>> spec = {
... "data": [
... {
... "name": "foo",
... "url": "https://path/to/file.csv"
... },
... {
... "name": "bar",
... "url": "vegafusion+dataset://inline_dataset_123"
... }
... ]
... }
>>> get_inline_table_names(spec)
{'inline_dataset_123'}
"""
table_names = set()
# Process datasets
for data in vega_spec.get("data", []):
url = data.get("url", "")
if url.startswith(VEGAFUSION_PREFIX):
name = url[len(VEGAFUSION_PREFIX) :]
table_names.add(name)
# Recursively process child marks, which may have their own datasets
for mark in vega_spec.get("marks", []):
table_names.update(get_inline_table_names(mark))
return table_names
def get_inline_tables(vega_spec: dict) -> Dict[str, DataFrameLike]:
"""Get the inline tables referenced by a Vega specification
Note: This function should only be called on a Vega spec that corresponds
to a chart that was processed by the vegafusion_data_transformer.
Furthermore, this function may only be called once per spec because
the returned dataframes are deleted from internal storage.
Parameters
----------
vega_spec: dict
A Vega specification dict
Returns
-------
dict from str to dataframe
dict from inline dataset name to dataframe object
"""
table_names = get_inline_table_names(vega_spec)
tables = {}
for table_name in table_names:
try:
tables[table_name] = extracted_inline_tables.pop(table_name)
except KeyError:
# named dataset that was provided by the user
pass
return tables
def compile_to_vegafusion_chart_state(
vegalite_spec: dict, local_tz: str
) -> "ChartState":
"""Compile a Vega-Lite spec to a VegaFusion ChartState
Note: This function should only be called on a Vega-Lite spec
that was generated with the "vegafusion" data transformer enabled.
In particular, this spec may contain references to extract datasets
using table:// prefixed URLs.
Parameters
----------
vegalite_spec: dict
A Vega-Lite spec that was generated from an Altair chart with
the "vegafusion" data transformer enabled
local_tz: str
Local timezone name (e.g. 'America/New_York')
Returns
-------
ChartState
A VegaFusion ChartState object
"""
# Local import to avoid circular ImportError
from altair import vegalite_compilers, data_transformers
vf = import_vegafusion()
# Compile Vega-Lite spec to Vega
compiler = vegalite_compilers.get()
if compiler is None:
raise ValueError("No active vega-lite compiler plugin found")
vega_spec = compiler(vegalite_spec)
# Retrieve dict of inline tables referenced by the spec
inline_tables = get_inline_tables(vega_spec)
# Pre-evaluate transforms in vega spec with vegafusion
row_limit = data_transformers.options.get("max_rows", None)
chart_state = vf.runtime.new_chart_state(
vega_spec,
local_tz=local_tz,
inline_datasets=inline_tables,
row_limit=row_limit,
)
# Check from row limit warning and convert to MaxRowsError
handle_row_limit_exceeded(row_limit, chart_state.get_warnings())
return chart_state
def compile_with_vegafusion(vegalite_spec: dict) -> dict:
"""Compile a Vega-Lite spec to Vega and pre-transform with VegaFusion
Note: This function should only be called on a Vega-Lite spec
that was generated with the "vegafusion" data transformer enabled.
In particular, this spec may contain references to extract datasets
using table:// prefixed URLs.
Parameters
----------
vegalite_spec: dict
A Vega-Lite spec that was generated from an Altair chart with
the "vegafusion" data transformer enabled
Returns
-------
dict
A Vega spec that has been pre-transformed by VegaFusion
"""
# Local import to avoid circular ImportError
from altair import vegalite_compilers, data_transformers
vf = import_vegafusion()
# Compile Vega-Lite spec to Vega
compiler = vegalite_compilers.get()
if compiler is None:
raise ValueError("No active vega-lite compiler plugin found")
vega_spec = compiler(vegalite_spec)
# Retrieve dict of inline tables referenced by the spec
inline_tables = get_inline_tables(vega_spec)
# Pre-evaluate transforms in vega spec with vegafusion
row_limit = data_transformers.options.get("max_rows", None)
transformed_vega_spec, warnings = vf.runtime.pre_transform_spec(
vega_spec,
vf.get_local_tz(),
inline_datasets=inline_tables,
row_limit=row_limit,
)
# Check from row limit warning and convert to MaxRowsError
handle_row_limit_exceeded(row_limit, warnings)
return transformed_vega_spec
def handle_row_limit_exceeded(row_limit: int, warnings: list):
for warning in warnings:
if warning.get("type") == "RowLimitExceeded":
raise MaxRowsError(
"The number of dataset rows after filtering and aggregation exceeds\n"
f"the current limit of {row_limit}. Try adding an aggregation to reduce\n"
"the size of the dataset that must be loaded into the browser. Or, disable\n"
"the limit by calling alt.data_transformers.disable_max_rows(). Note that\n"
"disabling this limit may cause the browser to freeze or crash."
)
def using_vegafusion() -> bool:
"""Check whether the vegafusion data transformer is enabled"""
# Local import to avoid circular ImportError
from altair import data_transformers
return data_transformers.active == "vegafusion"
|