Spaces:
Running
Running
File size: 80,246 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import gc
import importlib
import inspect
import json
import logging
import os
import re
import shutil
import tempfile
import warnings
from collections import OrderedDict, defaultdict
from typing import Dict, List, Optional, Tuple, Union
import packaging
import torch
import torch.nn as nn
from ..state import AcceleratorState
from .constants import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
from .dataclasses import AutocastKwargs, CustomDtype, DistributedType
from .imports import (
is_mlu_available,
is_mps_available,
is_npu_available,
is_peft_available,
is_torch_xla_available,
is_xpu_available,
)
from .offload import load_offloaded_weight, offload_weight, save_offload_index
from .tqdm import is_tqdm_available, tqdm
from .versions import compare_versions
if is_npu_available(check_device=False):
import torch_npu # noqa: F401
if is_mlu_available(check_device=False):
import torch_mlu # noqa: F401
from safetensors import safe_open
from safetensors.torch import load_file as safe_load_file
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
logger = logging.getLogger(__name__)
def is_peft_model(model):
from .other import extract_model_from_parallel
if is_peft_available():
from peft import PeftModel
return is_peft_available() and isinstance(extract_model_from_parallel(model), PeftModel)
def check_device_same(first_device, second_device):
"""
Utility method to check if two `torch` devices are similar. When dealing with CUDA devices, torch throws `False`
for `torch.device("cuda") == torch.device("cuda:0")` whereas they should be the same
Args:
first_device (`torch.device`):
First device to check
second_device (`torch.device`):
Second device to check
"""
if first_device.type != second_device.type:
return False
if first_device.type == "cuda" and first_device.index is None:
# In case the first_device is a cuda device and have
# the index attribute set to `None`, default it to `0`
first_device = torch.device("cuda", index=0)
if second_device.type == "cuda" and second_device.index is None:
# In case the second_device is a cuda device and have
# the index attribute set to `None`, default it to `0`
second_device = torch.device("cuda", index=0)
return first_device == second_device
def convert_file_size_to_int(size: Union[int, str]):
"""
Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).
Args:
size (`int` or `str`): The size to convert. Will be directly returned if an `int`.
Example:
```py
>>> convert_file_size_to_int("1MiB")
1048576
```
"""
mem_size = -1
err_msg = (
f"`size` {size} is not in a valid format. Use an integer for bytes, or a string with an unit (like '5.0GB')."
)
try:
if isinstance(size, int):
mem_size = size
elif size.upper().endswith("GIB"):
mem_size = int(float(size[:-3]) * (2**30))
elif size.upper().endswith("MIB"):
mem_size = int(float(size[:-3]) * (2**20))
elif size.upper().endswith("KIB"):
mem_size = int(float(size[:-3]) * (2**10))
elif size.upper().endswith("GB"):
int_size = int(float(size[:-2]) * (10**9))
mem_size = int_size // 8 if size.endswith("b") else int_size
elif size.upper().endswith("MB"):
int_size = int(float(size[:-2]) * (10**6))
mem_size = int_size // 8 if size.endswith("b") else int_size
elif size.upper().endswith("KB"):
int_size = int(float(size[:-2]) * (10**3))
mem_size = int_size // 8 if size.endswith("b") else int_size
except ValueError:
raise ValueError(err_msg)
if mem_size < 0:
raise ValueError(err_msg)
return mem_size
def dtype_byte_size(dtype: torch.dtype):
"""
Returns the size (in bytes) occupied by one parameter of type `dtype`.
Example:
```py
>>> dtype_byte_size(torch.float32)
4
```
"""
if dtype == torch.bool:
return 1 / 8
elif dtype == CustomDtype.INT2:
return 1 / 4
elif dtype == CustomDtype.INT4:
return 1 / 2
elif dtype == CustomDtype.FP8:
return 1
bit_search = re.search(r"[^\d](\d+)$", str(dtype))
if bit_search is None:
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
bit_size = int(bit_search.groups()[0])
return bit_size // 8
def id_tensor_storage(tensor: torch.Tensor) -> Tuple[torch.device, int, int]:
"""
Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For
example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is
guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with
non-overlapping lifetimes may have the same id.
"""
_SIZE = {
torch.int64: 8,
torch.float32: 4,
torch.int32: 4,
torch.bfloat16: 2,
torch.float16: 2,
torch.int16: 2,
torch.uint8: 1,
torch.int8: 1,
torch.bool: 1,
torch.float64: 8,
}
try:
storage_ptr = tensor.untyped_storage().data_ptr()
storage_size = tensor.untyped_storage().nbytes()
except Exception:
# Fallback for torch==1.10
try:
storage_ptr = tensor.storage().data_ptr()
storage_size = tensor.storage().size() * _SIZE[tensor.dtype]
except NotImplementedError:
# Fallback for meta storage
storage_ptr = 0
# On torch >=2.0 this is the tensor size
storage_size = tensor.nelement() * _SIZE[tensor.dtype]
return tensor.device, storage_ptr, storage_size
def shard_checkpoint(
state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
"""
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
given size.
The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
[6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].
<Tip warning={true}>
If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will
have a size greater than `max_shard_size`.
</Tip>
Args:
state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
(like `"5MB"`).
weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
The name of the model save file.
"""
max_shard_size = convert_file_size_to_int(max_shard_size)
sharded_state_dicts = [{}]
last_block_size = 0
total_size = 0
storage_id_to_block = {}
for key, weight in state_dict.items():
# when bnb serialization is used the weights in the state dict can be strings
# check: https://github.com/huggingface/transformers/pull/24416 for more details
if isinstance(weight, str):
continue
else:
storage_id = id_tensor_storage(weight)
# If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
if storage_id in storage_id_to_block:
block_id = storage_id_to_block[storage_id]
sharded_state_dicts[block_id][key] = weight
continue
weight_size = weight.numel() * dtype_byte_size(weight.dtype)
# If this weight is going to tip up over the maximal size, we split.
if last_block_size + weight_size > max_shard_size:
sharded_state_dicts.append({})
last_block_size = 0
sharded_state_dicts[-1][key] = weight
last_block_size += weight_size
total_size += weight_size
storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
# If we only have one shard, we return it
if len(sharded_state_dicts) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
weight_map = {}
shards = {}
for idx, shard in enumerate(sharded_state_dicts):
shard_file = weights_name.replace(".bin", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.bin")
shard_file = shard_file.replace(
".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
)
shards[shard_file] = shard
for key in shard.keys():
weight_map[key] = shard_file
# Add the metadata
metadata = {"total_size": total_size}
index = {"metadata": metadata, "weight_map": weight_map}
return shards, index
def set_module_tensor_to_device(
module: nn.Module,
tensor_name: str,
device: Union[int, str, torch.device],
value: Optional[torch.Tensor] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
fp16_statistics: Optional[torch.HalfTensor] = None,
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
):
"""
A helper function to set a given tensor (parameter of buffer) of a module on a specific device (note that doing
`param.to(device)` creates a new tensor not linked to the parameter, which is why we need this function).
Args:
module (`torch.nn.Module`):
The module in which the tensor we want to move lives.
tensor_name (`str`):
The full name of the parameter/buffer.
device (`int`, `str` or `torch.device`):
The device on which to set the tensor.
value (`torch.Tensor`, *optional*):
The value of the tensor (useful when going from the meta device to any other device).
dtype (`torch.dtype`, *optional*):
If passed along the value of the parameter will be cast to this `dtype`. Otherwise, `value` will be cast to
the dtype of the existing parameter in the model.
fp16_statistics (`torch.HalfTensor`, *optional*):
The list of fp16 statistics to set on the module, used for 8 bit model serialization.
tied_params_map (Dict[int, Dict[torch.device, torch.Tensor]], *optional*, defaults to `None`):
A map of current data pointers to dictionaries of devices to already dispatched tied weights. For a given
execution device, this parameter is useful to reuse the first available pointer of a shared weight on the
device for all others, instead of duplicating memory.
"""
# Recurse if needed
if "." in tensor_name:
splits = tensor_name.split(".")
for split in splits[:-1]:
new_module = getattr(module, split)
if new_module is None:
raise ValueError(f"{module} has no attribute {split}.")
module = new_module
tensor_name = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
is_buffer = tensor_name in module._buffers
old_value = getattr(module, tensor_name)
# Treat the case where old_value (or a custom `value`, typically offloaded to RAM/disk) belongs to a tied group, and one of the weight
# in the tied group has already been dispatched to the device, by avoiding reallocating memory on the device and just copying the pointer.
if (
value is not None
and tied_params_map is not None
and value.data_ptr() in tied_params_map
and device in tied_params_map[value.data_ptr()]
):
module._parameters[tensor_name] = tied_params_map[value.data_ptr()][device]
return
elif (
tied_params_map is not None
and old_value.data_ptr() in tied_params_map
and device in tied_params_map[old_value.data_ptr()]
):
module._parameters[tensor_name] = tied_params_map[old_value.data_ptr()][device]
return
if old_value.device == torch.device("meta") and device not in ["meta", torch.device("meta")] and value is None:
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}.")
if value is not None:
if old_value.shape != value.shape:
raise ValueError(
f'Trying to set a tensor of shape {value.shape} in "{tensor_name}" (which has shape {old_value.shape}), this look incorrect.'
)
if dtype is None:
# For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model
value = value.to(old_value.dtype)
elif not str(value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
value = value.to(dtype)
param = module._parameters[tensor_name] if tensor_name in module._parameters else None
param_cls = type(param)
device_quantization = None
with torch.no_grad():
# leave it on cpu first before moving them to cuda
# # fix the case where the device is meta, we don't want to put it on cpu because there is no data =0
if (
param is not None
and param.device.type != "cuda"
and torch.device(device).type == "cuda"
and param_cls.__name__ in ["Int8Params", "FP4Params", "Params4bit"]
):
device_quantization = device
device = "cpu"
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
elif is_mlu_available() and isinstance(device, int):
device = f"mlu:{device}"
if is_xpu_available() and isinstance(device, int):
device = f"xpu:{device}"
if value is None:
new_value = old_value.to(device)
if dtype is not None and device in ["meta", torch.device("meta")]:
if not str(old_value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
new_value = new_value.to(dtype)
if not is_buffer:
module._parameters[tensor_name] = param_cls(new_value, requires_grad=old_value.requires_grad)
elif isinstance(value, torch.Tensor):
new_value = value.to(device)
else:
new_value = torch.tensor(value, device=device)
if device_quantization is not None:
device = device_quantization
if is_buffer:
module._buffers[tensor_name] = new_value
elif value is not None or not check_device_same(torch.device(device), module._parameters[tensor_name].device):
param_cls = type(module._parameters[tensor_name])
kwargs = module._parameters[tensor_name].__dict__
if param_cls.__name__ in ["Int8Params", "FP4Params"]:
if param_cls.__name__ == "Int8Params" and new_value.dtype == torch.float32:
# downcast to fp16 if any - needed for 8bit serialization
new_value = new_value.to(torch.float16)
# quantize module that are going to stay on the cpu so that we offload quantized weights
if device == "cpu" and param_cls.__name__ == "Int8Params":
new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(0).to("cpu")
new_value.CB = new_value.CB.to("cpu")
new_value.SCB = new_value.SCB.to("cpu")
else:
new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(device)
elif param_cls.__name__ in ["QTensor", "QBitsTensor"]:
new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad).to(device)
else:
new_value = param_cls(new_value, requires_grad=old_value.requires_grad).to(device)
module._parameters[tensor_name] = new_value
if fp16_statistics is not None:
module._parameters[tensor_name].SCB = fp16_statistics.to(device)
del fp16_statistics
# as we put the weight to meta, it doesn't have SCB attr anymore. make sure that it is not a meta weight
if (
module.__class__.__name__ == "Linear8bitLt"
and getattr(module.weight, "SCB", None) is None
and str(module.weight.device) != "meta"
):
# quantize only if necessary
device_index = torch.device(device).index if torch.device(device).type == "cuda" else None
if not getattr(module.weight, "SCB", None) and device_index is not None:
if module.bias is not None and module.bias.device.type != "meta":
# if a bias exists, we need to wait until the bias is set on the correct device
module = module.cuda(device_index)
elif module.bias is None:
# if no bias exists, we can quantize right away
module = module.cuda(device_index)
elif module.__class__.__name__ == "Linear4bit" and getattr(module.weight, "quant_state", None) is None:
# quantize only if necessary
device_index = torch.device(device).index if torch.device(device).type == "cuda" else None
if not getattr(module.weight, "quant_state", None) and device_index is not None:
module.weight = module.weight.cuda(device_index)
# clean pre and post foward hook
if is_npu_available():
torch.npu.empty_cache()
elif is_mlu_available():
torch.mlu.empty_cache()
elif is_xpu_available():
torch.xpu.empty_cache()
else:
torch.cuda.empty_cache()
# When handling tied weights, we update tied_params_map to keep track of the tied weights that have already been allocated on the device in
# order to avoid duplicating memory, see above.
if (
tied_params_map is not None
and old_value.data_ptr() in tied_params_map
and device not in tied_params_map[old_value.data_ptr()]
):
tied_params_map[old_value.data_ptr()][device] = new_value
elif (
value is not None
and tied_params_map is not None
and value.data_ptr() in tied_params_map
and device not in tied_params_map[value.data_ptr()]
):
tied_params_map[value.data_ptr()][device] = new_value
def named_module_tensors(
module: nn.Module, include_buffers: bool = True, recurse: bool = False, remove_non_persistent: bool = False
):
"""
A helper function that gathers all the tensors (parameters + buffers) of a given module. If `include_buffers=True`
it's the same as doing `module.named_parameters(recurse=recurse) + module.named_buffers(recurse=recurse)`.
Args:
module (`torch.nn.Module`):
The module we want the tensors on.
include_buffer (`bool`, *optional*, defaults to `True`):
Whether or not to include the buffers in the result.
recurse (`bool`, *optional`, defaults to `False`):
Whether or not to go look in every submodule or just return the direct parameters and buffers.
remove_non_persistent (`bool`, *optional*, defaults to `False`):
Whether or not to remove the non persistent buffer from the buffers. Useful only when include_buffers =
True
"""
yield from module.named_parameters(recurse=recurse)
if include_buffers:
non_persistent_buffers = set()
if remove_non_persistent:
non_persistent_buffers = get_non_persistent_buffers(module, recurse=recurse)
for named_buffer in module.named_buffers(recurse=recurse):
name, _ = named_buffer
if name not in non_persistent_buffers:
yield named_buffer
def get_non_persistent_buffers(module: nn.Module, recurse: bool = False):
"""
Gather all non persistent buffers of a given modules into a set
Args:
module (`nn.Module`):
The module we want the non persistent buffers on.
recurse (`bool`, *optional*, defaults to `False`):
Whether or not to go look in every submodule or just return the direct non persistent buffers.
"""
non_persistent_buffers_set = module._non_persistent_buffers_set
if recurse:
for _, m in module.named_modules():
non_persistent_buffers_set |= m._non_persistent_buffers_set
return non_persistent_buffers_set
class FindTiedParametersResult(list):
"""
This is a subclass of a list to handle backward compatibility for Transformers. Do not rely on the fact this is not
a list or on the `values` method as in the future this will be removed.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def values(self):
# TODO: at the next Transformers release (4.28.0) issue a deprecation warning here.
return sum([x[1:] for x in self], [])
def check_tied_parameters_in_config(model: nn.Module):
"""
Check if there is any indication in the given model that some weights should be tied.
Args:
model (`torch.nn.Module`): The model to inspect
Returns:
bool: True if the model needs to have tied weights
"""
# based on model.tie_weights() method
has_tied_word_embedding = False
has_tied_encoder_decoder = False
has_tied_module = False
if "PreTrainedModel" in [c.__name__ for c in inspect.getmro(model.__class__)]:
has_tied_word_embedding = (
hasattr(model, "config")
and getattr(model.config, "tie_word_embeddings", False)
and model.get_output_embeddings()
)
has_tied_encoder_decoder = (
hasattr(model, "config")
and getattr(model.config, "is_encoder_decoder", False)
and getattr(model.config, "tie_encoder_decoder", False)
)
has_tied_module = any(hasattr(module, "_tie_weights") for module in model.modules())
return any([has_tied_word_embedding, has_tied_encoder_decoder, has_tied_module])
def _get_param_device(param, device_map):
if param in device_map:
return device_map[param]
parent_param = ".".join(param.split(".")[:-1])
if parent_param == param:
raise ValueError(f"The `device_map` does not contain the module {param}.")
else:
return _get_param_device(parent_param, device_map)
def check_tied_parameters_on_same_device(tied_params, device_map):
"""
Check if tied parameters are on the same device
Args:
tied_params (`List[List[str]]`):
A list of lists of parameter names being all tied together.
device_map (`Dict[str, Union[int, str, torch.device]]`):
A map that specifies where each submodule should go.
"""
for tie_param in tied_params:
tie_param_devices = {}
for param in tie_param:
tie_param_devices[param] = _get_param_device(param, device_map)
if len(set(tie_param_devices.values())) > 1:
logger.warn(
f"Tied parameters are on different devices: {tie_param_devices}. "
"Please modify your custom device map or set `device_map='auto'`. "
)
def find_tied_parameters(model: nn.Module, **kwargs):
"""
Find the tied parameters in a given model.
<Tip warning={true}>
The signature accepts keyword arguments, but they are for the recursive part of this function and you should ignore
them.
</Tip>
Args:
model (`torch.nn.Module`): The model to inspect.
Returns:
List[List[str]]: A list of lists of parameter names being all tied together.
Example:
```py
>>> from collections import OrderedDict
>>> import torch.nn as nn
>>> model = nn.Sequential(OrderedDict([("linear1", nn.Linear(4, 4)), ("linear2", nn.Linear(4, 4))]))
>>> model.linear2.weight = model.linear1.weight
>>> find_tied_parameters(model)
[['linear1.weight', 'linear2.weight']]
```
"""
# Initialize result and named_parameters before recursing.
named_parameters = kwargs.get("named_parameters", None)
prefix = kwargs.get("prefix", "")
result = kwargs.get("result", {})
if named_parameters is None:
named_parameters = {n: p for n, p in model.named_parameters()}
else:
# A tied parameter will not be in the full `named_parameters` seen above but will be in the `named_parameters`
# of the submodule it belongs to. So while recursing we track the names that are not in the initial
# `named_parameters`.
for name, parameter in model.named_parameters():
full_name = name if prefix == "" else f"{prefix}.{name}"
if full_name not in named_parameters:
# When we find one, it has to be one of the existing parameters.
for new_name, new_param in named_parameters.items():
if new_param is parameter:
if new_name not in result:
result[new_name] = []
result[new_name].append(full_name)
# Once we have treated direct parameters, we move to the child modules.
for name, child in model.named_children():
child_name = name if prefix == "" else f"{prefix}.{name}"
find_tied_parameters(child, named_parameters=named_parameters, prefix=child_name, result=result)
return FindTiedParametersResult([sorted([weight] + list(set(tied))) for weight, tied in result.items()])
def retie_parameters(model, tied_params):
"""
Reties tied parameters in a given model if the link was broken (for instance when adding hooks).
Args:
model (`torch.nn.Module`):
The model in which to retie parameters.
tied_params (`List[List[str]]`):
A mapping parameter name to tied parameter name as obtained by `find_tied_parameters`.
"""
for tied_group in tied_params:
param_to_tie = None
# two loops : the first one to set param_to_tie , the second one to change the values of tied_group
for param_name in tied_group:
module = model
splits = param_name.split(".")
for split in splits[:-1]:
module = getattr(module, split)
param = getattr(module, splits[-1])
if param_to_tie is None and param.device != torch.device("meta"):
param_to_tie = param
break
if param_to_tie is not None:
for param_name in tied_group:
module = model
splits = param_name.split(".")
for split in splits[:-1]:
module = getattr(module, split)
setattr(module, splits[-1], param_to_tie)
def _get_proper_dtype(dtype: Union[str, torch.device]) -> torch.dtype:
"""
Just does torch.dtype(dtype) if necessary.
"""
if isinstance(dtype, str):
# We accept "torch.float16" or just "float16"
dtype = dtype.replace("torch.", "")
dtype = getattr(torch, dtype)
return dtype
def compute_module_sizes(
model: nn.Module,
dtype: Optional[Union[str, torch.device]] = None,
special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
buffers_only: bool = False,
):
"""
Compute the size of each submodule of a given model.
"""
if dtype is not None:
dtype = _get_proper_dtype(dtype)
dtype_size = dtype_byte_size(dtype)
if special_dtypes is not None:
special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
module_sizes = defaultdict(int)
module_list = []
if not buffers_only:
module_list = named_module_tensors(model, recurse=True)
else:
module_list = model.named_buffers(recurse=True)
for name, tensor in module_list:
if special_dtypes is not None and name in special_dtypes:
size = tensor.numel() * special_dtypes_size[name]
elif dtype is None:
size = tensor.numel() * dtype_byte_size(tensor.dtype)
elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
# According to the code in set_module_tensor_to_device, these types won't be converted
# so use their original size here
size = tensor.numel() * dtype_byte_size(tensor.dtype)
else:
size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
name_parts = name.split(".")
for idx in range(len(name_parts) + 1):
module_sizes[".".join(name_parts[:idx])] += size
return module_sizes
def compute_module_total_buffer_size(
model: nn.Module,
dtype: Optional[Union[str, torch.device]] = None,
special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
):
"""
Compute the total size of buffers in each submodule of a given model.
"""
module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes, buffers_only=True)
return module_sizes.get("", 0)
def get_max_layer_size(
modules: List[Tuple[str, torch.nn.Module]], module_sizes: Dict[str, int], no_split_module_classes: List[str]
):
"""
Utility function that will scan a list of named modules and return the maximum size used by one full layer. The
definition of a layer being:
- a module with no direct children (just parameters and buffers)
- a module whose class name is in the list `no_split_module_classes`
Args:
modules (`List[Tuple[str, torch.nn.Module]]`):
The list of named modules where we want to determine the maximum layer size.
module_sizes (`Dict[str, int]`):
A dictionary mapping each layer name to its size (as generated by `compute_module_sizes`).
no_split_module_classes (`List[str]`):
A list of class names for layers we don't want to be split.
Returns:
`Tuple[int, List[str]]`: The maximum size of a layer with the list of layer names realizing that maximum size.
"""
max_size = 0
layer_names = []
modules_to_treat = modules.copy()
while len(modules_to_treat) > 0:
module_name, module = modules_to_treat.pop(0)
modules_children = list(module.named_children()) if isinstance(module, torch.nn.Module) else []
if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes:
# No splitting this one so we compare to the max_size
size = module_sizes[module_name]
if size > max_size:
max_size = size
layer_names = [module_name]
elif size == max_size:
layer_names.append(module_name)
else:
modules_to_treat = [(f"{module_name}.{n}", v) for n, v in modules_children] + modules_to_treat
return max_size, layer_names
def get_max_memory(max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None):
"""
Get the maximum memory available if nothing is passed, converts string to int otherwise.
"""
import psutil
if max_memory is None:
if not (torch.cuda.is_available() or is_npu_available() or is_mlu_available() or is_xpu_available()):
max_memory = {}
else:
# Make sure CUDA is initialized on each GPU to have the right memory info.
if is_npu_available():
for i in range(torch.npu.device_count()):
_ = torch.tensor(0, device=torch.device("npu", i))
max_memory = {i: torch.npu.mem_get_info(i)[0] for i in range(torch.npu.device_count())}
elif is_mlu_available():
for i in range(torch.mlu.device_count()):
_ = torch.tensor(0, device=torch.device("mlu", i))
max_memory = {i: torch.mlu.mem_get_info(i)[0] for i in range(torch.mlu.device_count())}
elif is_xpu_available():
for i in range(torch.xpu.device_count()):
_ = torch.tensor(0, device=torch.device("xpu", i))
max_memory = {i: torch.xpu.max_memory_allocated(i) for i in range(torch.xpu.device_count())}
else:
for i in range(torch.cuda.device_count()):
_ = torch.tensor([0], device=i)
max_memory = {i: torch.cuda.mem_get_info(i)[0] for i in range(torch.cuda.device_count())}
# allocate everything in the mps device as the RAM is shared
if is_mps_available():
max_memory["mps"] = psutil.virtual_memory().available
else:
max_memory["cpu"] = psutil.virtual_memory().available
return max_memory
for key in max_memory:
if isinstance(max_memory[key], str):
max_memory[key] = convert_file_size_to_int(max_memory[key])
# Need to sort the device by type to make sure that we allocate the gpu first.
# As gpu/npu/xpu are represented by int, we need to sort them first.
gpu_devices = [k for k in max_memory.keys() if isinstance(k, int)]
gpu_devices.sort()
# check if gpu/npu/xpu devices are available and if not, throw a warning
if is_npu_available():
num_devices = torch.npu.device_count()
elif is_mlu_available():
num_devices = torch.mlu.device_count()
elif is_xpu_available():
num_devices = torch.xpu.device_count()
else:
num_devices = torch.cuda.device_count()
for device in gpu_devices:
if device >= num_devices or device < 0:
logger.warning(f"Device {device} is not available, available devices are {list(range(num_devices))}")
# Add the other devices in the preset order if they are available
all_devices = gpu_devices + [k for k in ["mps", "cpu", "disk"] if k in max_memory.keys()]
# Raise an error if a device is not recognized
for k in max_memory.keys():
if k not in all_devices:
raise ValueError(
f"Device {k} is not recognized, available devices are integers(for GPU/XPU), 'mps', 'cpu' and 'disk'"
)
max_memory = {k: max_memory[k] for k in all_devices}
return max_memory
def clean_device_map(device_map: Dict[str, Union[int, str, torch.device]], module_name: str = ""):
"""
Cleans a device_map by grouping all submodules that go on the same device together.
"""
# Get the value of the current module and if there is only one split across several keys, regroup it.
prefix = "" if module_name == "" else f"{module_name}."
values = [v for k, v in device_map.items() if k.startswith(prefix)]
if len(set(values)) == 1 and len(values) > 1:
for k in [k for k in device_map if k.startswith(prefix)]:
del device_map[k]
device_map[module_name] = values[0]
# Recurse over the children
children_modules = [k for k in device_map.keys() if k.startswith(prefix) and len(k) > len(module_name)]
idx = len(module_name.split(".")) + 1 if len(module_name) > 0 else 1
children_modules = set(".".join(k.split(".")[:idx]) for k in children_modules)
for child in children_modules:
clean_device_map(device_map, module_name=child)
return device_map
def load_offloaded_weights(model, index, offload_folder):
"""
Loads the weights from the offload folder into the model.
Args:
model (`torch.nn.Module`):
The model to load the weights into.
index (`dict`):
A dictionary containing the parameter name and its metadata for each parameter that was offloaded from the
model.
offload_folder (`str`):
The folder where the offloaded weights are stored.
"""
if index is None or len(index) == 0:
# Nothing to do
return
for param_name, metadata in index.items():
if "SCB" in param_name:
continue
fp16_statistics = None
if "weight" in param_name and param_name.replace("weight", "SCB") in index.keys():
weight_name = param_name.replace("weight", "SCB")
fp16_statistics = load_offloaded_weight(
os.path.join(offload_folder, f"{weight_name}.dat"), index[weight_name]
)
tensor_file = os.path.join(offload_folder, f"{param_name}.dat")
weight = load_offloaded_weight(tensor_file, metadata)
set_module_tensor_to_device(model, param_name, "cpu", value=weight, fp16_statistics=fp16_statistics)
def get_balanced_memory(
model: nn.Module,
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
no_split_module_classes: Optional[List[str]] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
low_zero: bool = False,
):
"""
Compute a `max_memory` dictionary for [`infer_auto_device_map`] that will balance the use of each available GPU.
<Tip>
All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the
meta device (as it would if initialized within the `init_empty_weights` context manager).
</Tip>
Args:
model (`torch.nn.Module`):
The model to analyze.
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
Example: `max_memory={0: "1GB"}`.
no_split_module_classes (`List[str]`, *optional*):
A list of layer class names that should never be split across device (for instance any layer that has a
residual connection).
dtype (`str` or `torch.dtype`, *optional*):
If provided, the weights will be converted to that type when loaded.
special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*):
If provided, special dtypes to consider for some specific weights (will override dtype used as default for
all weights).
low_zero (`bool`, *optional*):
Minimizes the number of weights on GPU 0, which is convenient when it's used for other operations (like the
Transformers generate function).
"""
# Get default / clean up max_memory
user_not_set_max_memory = max_memory is None
max_memory = get_max_memory(max_memory)
if is_npu_available():
num_devices = len([d for d in max_memory if torch.device(d).type == "npu" and max_memory[d] > 0])
elif is_mlu_available():
num_devices = len([d for d in max_memory if torch.device(d).type == "mlu" and max_memory[d] > 0])
elif is_xpu_available():
num_devices = len(
[
d
for d in max_memory
if (
d != "cpu"
and (torch.device(d).type == "xpu" or torch.xpu.get_device_properties(d).dev_type == "gpu")
)
and max_memory[d] > 0
]
)
else:
num_devices = len([d for d in max_memory if torch.device(d).type == "cuda" and max_memory[d] > 0])
if num_devices == 0:
return max_memory
if num_devices == 1:
# We cannot do low_zero on just one GPU, but we will still reserve some memory for the buffer
low_zero = False
# If user just asked us to handle memory usage, we should avoid OOM
if user_not_set_max_memory:
for key in max_memory.keys():
if isinstance(key, int):
max_memory[key] *= 0.9 # 90% is a good compromise
logger.info(
f"We will use 90% of the memory on device {key} for storing the model, and 10% for the buffer to avoid OOM. "
"You can set `max_memory` in to a higher value to use more memory (at your own risk)."
)
break # only one device
module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes)
per_gpu = module_sizes[""] // (num_devices - 1 if low_zero else num_devices)
# We can't just set the memory to model_size // num_devices as it will end being too small: each GPU will get
# slightly less layers and some layers will end up offload at the end. So this function computes a buffer size to
# add which is the biggest of:
# - the size of no split block (if applicable)
# - the mean of the layer sizes
if no_split_module_classes is None:
no_split_module_classes = []
elif not isinstance(no_split_module_classes, (list, tuple)):
no_split_module_classes = [no_split_module_classes]
# Identify the size of the no_split_block modules
if len(no_split_module_classes) > 0:
no_split_children = {}
for name, size in module_sizes.items():
if name == "":
continue
submodule = model
for submodule_name in name.split("."):
submodule = getattr(submodule, submodule_name)
class_name = submodule.__class__.__name__
if class_name in no_split_module_classes and class_name not in no_split_children:
no_split_children[class_name] = size
if set(no_split_children.keys()) == set(no_split_module_classes):
break
buffer = max(no_split_children.values()) if len(no_split_children) > 0 else 0
else:
buffer = 0
# Compute mean of final modules. In the first dict of module sizes, leaves are the parameters
leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0]
module_sizes = {n: v for n, v in module_sizes.items() if n not in leaves}
# Once removed, leaves are the final modules.
leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0]
mean_leaves = int(sum([module_sizes[n] for n in leaves]) / max(len(leaves), 1))
buffer = int(1.25 * max(buffer, mean_leaves))
per_gpu += buffer
# Sorted list of GPUs id (we may have some gpu ids not included in the our max_memory list - let's ignore them)
gpus_idx_list = list(
sorted(
device_id for device_id, device_mem in max_memory.items() if isinstance(device_id, int) and device_mem > 0
)
)
# The last device is left with max_memory just in case the buffer is not enough.
for idx in gpus_idx_list[:-1]:
max_memory[idx] = min(max_memory[0] if low_zero and idx == 0 else per_gpu, max_memory[idx])
if low_zero:
min_zero = max(0, module_sizes[""] - sum([max_memory[i] for i in range(1, num_devices)]))
max_memory[0] = min(min_zero, max_memory[0])
return max_memory
def calculate_maximum_sizes(model: torch.nn.Module):
"Computes the total size of the model and its largest layer"
sizes = compute_module_sizes(model)
# `transformers` models store this information for us
no_split_modules = getattr(model, "_no_split_modules", None)
if no_split_modules is None:
no_split_modules = []
modules_to_treat = (
list(model.named_parameters(recurse=False))
+ list(model.named_children())
+ list(model.named_buffers(recurse=False))
)
largest_layer = get_max_layer_size(modules_to_treat, sizes, no_split_modules)
total_size = sizes[""]
return total_size, largest_layer
def infer_auto_device_map(
model: nn.Module,
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
no_split_module_classes: Optional[List[str]] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
special_dtypes: Optional[Dict[str, Union[str, torch.dtype]]] = None,
verbose: bool = False,
clean_result: bool = True,
offload_buffers: bool = False,
):
"""
Compute a device map for a given model giving priority to GPUs, then offload on CPU and finally offload to disk,
such that:
- we don't exceed the memory available of any of the GPU.
- if offload to the CPU is needed, there is always room left on GPU 0 to put back the layer offloaded on CPU that
has the largest size.
- if offload to the CPU is needed,we don't exceed the RAM available on the CPU.
- if offload to the disk is needed, there is always room left on the CPU to put back the layer offloaded on disk
that has the largest size.
<Tip>
All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the
meta device (as it would if initialized within the `init_empty_weights` context manager).
</Tip>
Args:
model (`torch.nn.Module`):
The model to analyze.
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
Example: `max_memory={0: "1GB"}`.
no_split_module_classes (`List[str]`, *optional*):
A list of layer class names that should never be split across device (for instance any layer that has a
residual connection).
dtype (`str` or `torch.dtype`, *optional*):
If provided, the weights will be converted to that type when loaded.
special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*):
If provided, special dtypes to consider for some specific weights (will override dtype used as default for
all weights).
verbose (`bool`, *optional*, defaults to `False`):
Whether or not to provide debugging statements as the function builds the device_map.
clean_result (`bool`, *optional*, defaults to `True`):
Clean the resulting device_map by grouping all submodules that go on the same device together.
offload_buffers (`bool`, *optional*, defaults to `False`):
In the layers that are offloaded on the CPU or the hard drive, whether or not to offload the buffers as
well as the parameters.
"""
# Get default / clean up max_memory
max_memory = get_max_memory(max_memory)
if no_split_module_classes is None:
no_split_module_classes = []
elif not isinstance(no_split_module_classes, (list, tuple)):
no_split_module_classes = [no_split_module_classes]
devices = list(max_memory.keys())
if "disk" not in devices:
devices.append("disk")
gpus = [device for device in devices if device not in ["cpu", "disk"]]
# Devices that need to keep space for a potential offloaded layer.
if "mps" in gpus:
main_devices = ["mps"]
elif len(gpus) > 0:
main_devices = [gpus[0], "cpu"]
else:
main_devices = ["cpu"]
module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes)
tied_parameters = find_tied_parameters(model)
if check_tied_parameters_in_config(model) and len(tied_parameters) == 0:
logger.warn(
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function."
)
device_map = OrderedDict()
current_device = 0
current_memory_used = 0
device_memory_used = {}
device_buffer_sizes = {}
# Direct submodules and parameters
modules_to_treat = (
list(model.named_parameters(recurse=False))
+ list(model.named_children())
+ list(model.named_buffers(recurse=False))
)
# Initialize maximum largest layer, to know which space to keep in memory
max_layer_size, max_layer_names = get_max_layer_size(modules_to_treat, module_sizes, no_split_module_classes)
# Ready ? This is going to be a bit messy.
while len(modules_to_treat) > 0:
name, module = modules_to_treat.pop(0)
if verbose:
print(f"\nTreating module {name}.")
# Max size in the remaining layers may have changed since we took one, so we maybe update it.
max_layer_names = [n for n in max_layer_names if n != name and not n.startswith(name + ".")]
if len(max_layer_names) == 0:
max_layer_size, max_layer_names = get_max_layer_size(
[(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
module_sizes,
no_split_module_classes,
)
# Assess size needed
module_size = module_sizes[name]
# We keep relevant tied parameters only: one of the tied parameters in the group is inside the current module
# and the other is not.
# Note: If we are currently processing the name `compute.weight`, an other parameter named e.g. `compute.weight_submodule.parameter`
# needs to be considered outside the current module, hence the check with additional dots.
tied_param_goups = [
tied_group
for tied_group in tied_parameters
if any(name + "." in k + "." for k in tied_group) and not all(name + "." in k + "." for k in tied_group)
]
if verbose and len(tied_param_goups) > 0:
print(f" Found the relevant tied param groups {tied_param_goups}")
# Then we keep track of all the parameters that are tied to the current module, but not in the current module
tied_params = sum(
[[p for p in tied_group if name + "." not in p + "."] for tied_group in tied_param_goups], []
)
if verbose and len(tied_params) > 0:
print(f" So those parameters need to be taken into account {tied_params}")
device = devices[current_device]
current_max_size = max_memory[device] if device != "disk" else None
current_memory_reserved = 0
# Reduce max size available by the largest layer.
if devices[current_device] in main_devices:
current_max_size = current_max_size - max_layer_size
current_memory_reserved = max_layer_size
# Case 1 -> We're too big!
if current_max_size is not None and current_memory_used + module_size > current_max_size:
# Split or not split?
modules_children = (
[]
if isinstance(module, nn.Parameter) or isinstance(module, torch.Tensor)
else list(module.named_children())
)
if verbose:
print(
f"Not enough space on {devices[current_device]} to put {name} (space available "
f"{current_max_size - current_memory_used}, module size {module_size})."
)
if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes:
# -> no split, we go to the next device
if verbose:
print("This module cannot be split, going to the next device.")
device_memory_used[device] = current_memory_used + current_memory_reserved
current_device += 1
modules_to_treat = [(name, module)] + modules_to_treat
current_memory_used = 0
else:
# -> split, we replace the module studied by its children + parameters
if verbose:
print(f"Splitting {name}.")
modules_children = list(module.named_parameters(recurse=False)) + modules_children
modules_to_treat = [(f"{name}.{n}", v) for n, v in modules_children] + modules_to_treat
# Update the max layer size.
max_layer_size, max_layer_names = get_max_layer_size(
[(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
module_sizes,
no_split_module_classes,
)
# Case 2, it fits! We're not entirely out of the wood though, because we may have some tied parameters.
elif len(tied_params) > 0:
# First locate all tied modules
tied_module_names = []
tied_modules = []
for tied_param in tied_params:
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n in tied_param][0]
tied_module_names.append(modules_to_treat[tied_module_index][0])
tied_modules.append(modules_to_treat[tied_module_index][1])
if verbose:
print(
f" It looks like {name} is going to fit on {devices[current_device]} but we have tied "
f"parameters to account for.\n - Names {tied_params}\n - Module names {tied_module_names}"
)
# Let's see if it all fits first
module_size_with_ties = module_size
for tied_param, tied_module_name in zip(tied_params, tied_module_names):
module_size_with_ties += module_sizes[tied_module_name] - module_sizes[tied_param]
if current_max_size is None or current_memory_used + module_size_with_ties <= current_max_size:
# We really really fit!
if verbose:
print(f"Putting {name} and {tied_module_names} on {devices[current_device]}.")
current_memory_used += module_size_with_ties
device_map[name] = devices[current_device]
for tied_module_name in tied_module_names:
if tied_module_name in [m[0] for m in modules_to_treat]:
# The module may have been removed by a previous iteration of this loop.
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][
0
]
modules_to_treat.pop(tied_module_index)
device_map[tied_module_name] = devices[current_device]
if not offload_buffers and isinstance(module, nn.Module):
current_buffer_size = compute_module_total_buffer_size(
module, dtype=dtype, special_dtypes=special_dtypes
)
device_buffer_sizes[device] = device_buffer_sizes.get(device, 0) + current_buffer_size
else:
# We don't fit with the tied modules. Next question is: can we split one of the tied modules to make it
# smaller or do we need to go on the next device?
if verbose:
print(
f"Not enough space on {devices[current_device]} to put {name} and {tied_module_names} (space "
f"available {current_max_size - current_memory_used}, needed size {module_size_with_ties})."
)
split_happened = False
for tied_module_name, tied_module in zip(tied_module_names, tied_modules):
tied_module_children = list(tied_module.named_children())
if len(tied_module_children) == 0 or tied_module.__class__.__name__ in no_split_module_classes:
# can't break this one.
continue
if verbose:
print(f"Splitting {tied_module_name}.")
tied_module_children = list(tied_module.named_parameters(recurse=False)) + tied_module_children
tied_module_children = [(f"{tied_module_name}.{n}", v) for n, v in tied_module_children]
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][0]
modules_to_treat = (
[(name, module)]
+ modules_to_treat[:tied_module_index]
+ tied_module_children
+ modules_to_treat[tied_module_index + 1 :]
)
# Update the max layer size.
max_layer_size, max_layer_names = get_max_layer_size(
[(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
module_sizes,
no_split_module_classes,
)
split_happened = True
break
if not split_happened:
# If the tied module is not split, we go to the next device
if verbose:
print("None of the tied module can be split, going to the next device.")
device_memory_used[device] = current_memory_used + current_memory_reserved
current_device += 1
modules_to_treat = [(name, module)] + modules_to_treat
current_memory_used = 0
else:
if verbose:
if current_max_size is None:
print(f"Putting {name} (size={module_size}) on {devices[current_device]}.")
else:
print(
f"Putting {name} (size={module_size}) on {devices[current_device]} "
f"(available={current_max_size - current_memory_used})."
)
current_memory_used += module_size
device_memory_used[device] = current_memory_used + current_memory_reserved
device_map[name] = devices[current_device]
if not offload_buffers and isinstance(module, nn.Module):
current_buffer_size = compute_module_total_buffer_size(
module, dtype=dtype, special_dtypes=special_dtypes
)
device_buffer_sizes[device] = device_buffer_sizes.get(device, 0) + current_buffer_size
if clean_result:
device_map = clean_device_map(device_map)
non_gpu_buffer_size = device_buffer_sizes.get("cpu", 0) + device_buffer_sizes.get("disk", 0)
if non_gpu_buffer_size > 0 and not offload_buffers:
is_buffer_fit_any_gpu = False
for gpu_device, gpu_max_memory in max_memory.items():
if gpu_device == "cpu" or gpu_device == "disk":
continue
if not is_buffer_fit_any_gpu:
gpu_memory_used = device_memory_used.get(gpu_device, 0)
if gpu_max_memory >= non_gpu_buffer_size + gpu_memory_used:
is_buffer_fit_any_gpu = True
if len(gpus) > 0 and not is_buffer_fit_any_gpu:
warnings.warn(
f"Current model requires {non_gpu_buffer_size} bytes of buffer for offloaded layers, which seems does "
f"not fit any GPU's remaining memory. If you are experiencing a OOM later, please consider using "
f"offload_buffers=True."
)
return device_map
def check_device_map(model: nn.Module, device_map: Dict[str, Union[int, str, torch.device]]):
"""
Checks a device map covers everything in a given model.
Args:
model (`torch.nn.Module`): The model to check the device map against.
device_map (`Dict[str, Union[int, str, torch.device]]`): The device map to check.
"""
all_model_tensors = [name for name, _ in model.state_dict().items()]
for module_name in device_map.keys():
if module_name == "":
all_model_tensors.clear()
break
else:
all_model_tensors = [
name
for name in all_model_tensors
if not name == module_name and not name.startswith(module_name + ".")
]
if len(all_model_tensors) > 0:
non_covered_params = ", ".join(all_model_tensors)
raise ValueError(
f"The device_map provided does not give any device for the following parameters: {non_covered_params}"
)
def load_state_dict(checkpoint_file, device_map=None):
"""
Load a checkpoint from a given file. If the checkpoint is in the safetensors format and a device map is passed, the
weights can be fast-loaded directly on the GPU.
Args:
checkpoint_file (`str`): The path to the checkpoint to load.
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
name, once a given module name is inside, every submodule of it will be sent to the same device.
"""
if checkpoint_file.endswith(".safetensors"):
with safe_open(checkpoint_file, framework="pt") as f:
metadata = f.metadata()
weight_names = f.keys()
if metadata is None:
logger.warn(
f"The safetensors archive passed at {checkpoint_file} does not contain metadata. "
"Make sure to save your model with the `save_pretrained` method. Defaulting to 'pt' metadata."
)
metadata = {"format": "pt"}
if metadata.get("format") not in ["pt", "tf", "flax"]:
raise OSError(
f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
"you save your model with the `save_pretrained` method."
)
elif metadata["format"] != "pt":
raise ValueError(f"The checkpoint passed was saved with {metadata['format']}, we need a the pt format.")
if device_map is None:
return safe_load_file(checkpoint_file)
else:
# if we only have one device we can load everything directly
if len(set(device_map.values())) == 1:
return safe_load_file(checkpoint_file, device=list(device_map.values())[0])
devices = list(set(device_map.values()) - {"disk"})
# cpu device should always exist as fallback option
if "cpu" not in devices:
devices.append("cpu")
# For each device, get the weights that go there
device_weights = {device: [] for device in devices}
for module_name, device in device_map.items():
if device in devices:
device_weights[device].extend(
[k for k in weight_names if k == module_name or k.startswith(module_name + ".")]
)
# all weights that haven't defined a device should be loaded on CPU
device_weights["cpu"].extend([k for k in weight_names if k not in sum(device_weights.values(), [])])
tensors = {}
if is_tqdm_available():
progress_bar = tqdm(
main_process_only=False,
total=sum([len(device_weights[device]) for device in devices]),
unit="w",
smoothing=0,
leave=False,
)
else:
progress_bar = None
for device in devices:
target_device = device
if is_xpu_available():
current_safetensors_version = packaging.version.parse(importlib.metadata.version("safetensors"))
if compare_versions(current_safetensors_version, "<", "0.4.2"):
raise ModuleNotFoundError(
f"You need at least safetensors 0.4.2 for Intel GPU, while you have {current_safetensors_version}"
)
if isinstance(device, int):
target_device = f"xpu:{device}"
with safe_open(checkpoint_file, framework="pt", device=target_device) as f:
for key in device_weights[device]:
if progress_bar is not None:
progress_bar.set_postfix(dev=device, refresh=False)
progress_bar.set_description(key)
tensors[key] = f.get_tensor(key)
if progress_bar is not None:
progress_bar.update()
if progress_bar is not None:
progress_bar.close()
return tensors
else:
return torch.load(checkpoint_file, map_location=torch.device("cpu"))
def get_state_dict_offloaded_model(model: nn.Module):
"""
Returns the state dictionary for an offloaded model via iterative onloading
Args:
model (`torch.nn.Module`):
The offloaded model we want to save
"""
from ..hooks import AlignDevicesHook
state_dict = {}
placeholders = set()
for name, module in model.named_modules():
if name == "":
continue
if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload:
original_device = module._hf_hook.execution_device
# assign hook execution device to cpu
module._hf_hook.execution_device = "cpu"
# onload meta tensors to execution device
try:
module._hf_hook.pre_forward(module)
except MemoryError:
raise MemoryError("Offloaded module must fit in CPU memory to call save_model!") from None
module_state_dict = module.state_dict()
# offload meta tensors from cpu
module._hf_hook.post_forward(module, torch.tensor([]))
# re-assign hook to original execution device
module._hf_hook.execution_device = original_device
else:
module_state_dict = module.state_dict()
for key in module_state_dict:
# ignore placeholder parameters that are still on the meta device
if module_state_dict[key].device == torch.device("meta"):
placeholders.add(name + f".{key}")
continue
params = module_state_dict[key]
state_dict[name + f".{key}"] = params
for key in placeholders.copy():
if key in state_dict:
placeholders.remove(key)
if placeholders:
logger.warning(f"The following tensors were not saved because they were still on meta device: {placeholders}")
return state_dict
def load_checkpoint_in_model(
model: nn.Module,
checkpoint: Union[str, os.PathLike],
device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None,
offload_folder: Optional[Union[str, os.PathLike]] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
offload_state_dict: bool = False,
offload_buffers: bool = False,
keep_in_fp32_modules: List[str] = None,
offload_8bit_bnb: bool = False,
strict: bool = False,
):
"""
Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
loaded.
<Tip warning={true}>
Once loaded across devices, you still need to call [`dispatch_model`] on your model to make it able to run. To
group the checkpoint loading and dispatch in one single call, use [`load_checkpoint_and_dispatch`].
</Tip>
Args:
model (`torch.nn.Module`):
The model in which we want to load a checkpoint.
checkpoint (`str` or `os.PathLike`):
The folder checkpoint to load. It can be:
- a path to a file containing a whole model state dict
- a path to a `.json` file containing the index to a sharded checkpoint
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
- a path to a folder containing a unique pytorch_model.bin or a model.safetensors file.
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
name, once a given module name is inside, every submodule of it will be sent to the same device.
offload_folder (`str` or `os.PathLike`, *optional*):
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
dtype (`str` or `torch.dtype`, *optional*):
If provided, the weights will be converted to that type when loaded.
offload_state_dict (`bool`, *optional*, defaults to `False`):
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
the weight of the CPU state dict + the biggest shard does not fit.
offload_buffers (`bool`, *optional*, defaults to `False`):
Whether or not to include the buffers in the weights offloaded to disk.
keep_in_fp32_modules(`List[str]`, *optional*):
A list of the modules that we keep in `torch.float32` dtype.
offload_8bit_bnb (`bool`, *optional*):
Whether or not to enable offload of 8-bit modules on cpu/disk.
strict (`bool`, *optional*, defaults to `False`):
Whether to strictly enforce that the keys in the checkpoint state_dict match the keys of the model's
state_dict.
"""
if offload_8bit_bnb:
from .bnb import quantize_and_offload_8bit
tied_params = find_tied_parameters(model)
if check_tied_parameters_in_config(model) and len(tied_params) == 0:
logger.warn(
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function."
)
if device_map is not None:
check_tied_parameters_on_same_device(tied_params, device_map)
if offload_folder is None and device_map is not None and "disk" in device_map.values():
raise ValueError(
"At least one of the model submodule will be offloaded to disk, please pass along an `offload_folder`."
)
elif offload_folder is not None and device_map is not None and "disk" in device_map.values():
os.makedirs(offload_folder, exist_ok=True)
if isinstance(dtype, str):
# We accept "torch.float16" or just "float16"
dtype = dtype.replace("torch.", "")
dtype = getattr(torch, dtype)
checkpoint_files = None
index_filename = None
if os.path.isfile(checkpoint):
if str(checkpoint).endswith(".json"):
index_filename = checkpoint
else:
checkpoint_files = [checkpoint]
elif os.path.isdir(checkpoint):
# check if the whole state dict is present
potential_state_bin = [f for f in os.listdir(checkpoint) if f == WEIGHTS_NAME]
potential_state_safetensor = [f for f in os.listdir(checkpoint) if f == SAFE_WEIGHTS_NAME]
if len(potential_state_bin) == 1:
checkpoint_files = [os.path.join(checkpoint, potential_state_bin[0])]
elif len(potential_state_safetensor) == 1:
checkpoint_files = [os.path.join(checkpoint, potential_state_safetensor[0])]
else:
# otherwise check for sharded checkpoints
potential_index = [f for f in os.listdir(checkpoint) if f.endswith(".index.json")]
if len(potential_index) == 0:
raise ValueError(
f"{checkpoint} is not a folder containing a `.index.json` file or a {WEIGHTS_NAME} or a {SAFE_WEIGHTS_NAME} file"
)
elif len(potential_index) == 1:
index_filename = os.path.join(checkpoint, potential_index[0])
else:
raise ValueError(
f"{checkpoint} containing more than one `.index.json` file, delete the irrelevant ones."
)
else:
raise ValueError(
"`checkpoint` should be the path to a file containing a whole state dict, or the index of a sharded "
f"checkpoint, or a folder containing a sharded checkpoint or the whole state dict, but got {checkpoint}."
)
if index_filename is not None:
checkpoint_folder = os.path.split(index_filename)[0]
with open(index_filename) as f:
index = json.loads(f.read())
if "weight_map" in index:
index = index["weight_map"]
checkpoint_files = sorted(list(set(index.values())))
checkpoint_files = [os.path.join(checkpoint_folder, f) for f in checkpoint_files]
# Logic for missing/unexepected keys goes here.
offload_index = {}
if offload_state_dict:
state_dict_folder = tempfile.mkdtemp()
state_dict_index = {}
unexpected_keys = set()
model_keys = set(model.state_dict().keys())
buffer_names = [name for name, _ in model.named_buffers()]
for checkpoint_file in checkpoint_files:
loaded_checkpoint = load_state_dict(checkpoint_file, device_map=device_map)
if device_map is None:
model.load_state_dict(loaded_checkpoint, strict=strict)
unexpected_keys.update(set(loaded_checkpoint.keys()) - model_keys)
else:
for param_name, param in loaded_checkpoint.items():
# skip SCB parameter (for 8-bit serialization)
if "SCB" in param_name:
continue
if param_name not in model_keys:
unexpected_keys.add(param_name)
if not strict:
continue # Skip loading this parameter.
module_name = param_name
while len(module_name) > 0 and module_name not in device_map:
module_name = ".".join(module_name.split(".")[:-1])
if module_name == "" and "" not in device_map:
# TODO: group all errors and raise at the end.
raise ValueError(f"{param_name} doesn't have any device set.")
param_device = device_map[module_name]
new_dtype = dtype
if dtype is not None and torch.is_floating_point(param):
if keep_in_fp32_modules is not None and dtype == torch.float16:
proceed = False
for key in keep_in_fp32_modules:
if ((key in param_name) and (key + "." in param_name)) or key == param_name:
proceed = True
break
if proceed:
new_dtype = torch.float32
if "weight" in param_name and param_name.replace("weight", "SCB") in loaded_checkpoint.keys():
if param.dtype == torch.int8:
fp16_statistics = loaded_checkpoint[param_name.replace("weight", "SCB")]
else:
fp16_statistics = None
if param_device == "disk":
if offload_buffers or param_name not in buffer_names:
if new_dtype is None:
new_dtype = param.dtype
if offload_8bit_bnb:
quantize_and_offload_8bit(
model, param, param_name, new_dtype, offload_folder, offload_index, fp16_statistics
)
continue
else:
set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype)
offload_weight(param, param_name, offload_folder, index=offload_index)
elif param_device == "cpu" and offload_state_dict:
if new_dtype is None:
new_dtype = param.dtype
if offload_8bit_bnb:
quantize_and_offload_8bit(
model, param, param_name, new_dtype, state_dict_folder, state_dict_index, fp16_statistics
)
else:
set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype)
offload_weight(param, param_name, state_dict_folder, index=state_dict_index)
else:
set_module_tensor_to_device(
model,
param_name,
param_device,
value=param,
dtype=new_dtype,
fp16_statistics=fp16_statistics,
)
# Force Python to clean up.
del loaded_checkpoint
gc.collect()
if not strict and len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint at {checkpoint} were not used when"
f" initializing {model.__class__.__name__}: {unexpected_keys}. This may or may not be an issue - make sure that the checkpoint does not have unnecessary parameters, or that the model definition correctly corresponds to the checkpoint."
)
save_offload_index(offload_index, offload_folder)
# Load back offloaded state dict on CPU
if offload_state_dict:
load_offloaded_weights(model, state_dict_index, state_dict_folder)
shutil.rmtree(state_dict_folder)
retie_parameters(model, tied_params)
def get_mixed_precision_context_manager(native_amp: bool = False, autocast_kwargs: AutocastKwargs = None):
"""
Return a context manager for autocasting mixed precision
Args:
native_amp (`bool`, *optional*, defaults to False):
Whether mixed precision is actually enabled.
cache_enabled (`bool`, *optional*, defaults to True):
Whether the weight cache inside autocast should be enabled.
"""
state = AcceleratorState()
if autocast_kwargs is None:
autocast_kwargs = {}
else:
autocast_kwargs = autocast_kwargs.to_kwargs()
if native_amp:
device_type = (
"cuda"
if (state.distributed_type == DistributedType.XLA and is_torch_xla_available(check_is_gpu=True))
else state.device.type
)
if state.mixed_precision == "fp16":
return torch.autocast(device_type=device_type, dtype=torch.float16, **autocast_kwargs)
elif state.mixed_precision == "bf16" and state.distributed_type in [
DistributedType.NO,
DistributedType.MULTI_CPU,
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_XPU,
DistributedType.FSDP,
DistributedType.XLA,
]:
return torch.autocast(device_type=device_type, dtype=torch.bfloat16, **autocast_kwargs)
else:
return torch.autocast(device_type=device_type, **autocast_kwargs)
else:
return contextlib.nullcontext()
|