File size: 10,667 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os

import torch

from ..logging import get_logger
from .constants import FSDP_MODEL_NAME, FSDP_PYTORCH_VERSION, OPTIMIZER_NAME
from .imports import is_torch_distributed_available
from .modeling import is_peft_model
from .versions import is_torch_version


if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available():
    import torch.distributed.checkpoint as dist_cp
    from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
    from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
    from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
    from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType


logger = get_logger(__name__)


def _get_model_state_dict(model, adapter_only=False):
    if adapter_only and is_peft_model(model):
        from peft import get_peft_model_state_dict

        return get_peft_model_state_dict(model, adapter_name=model.active_adapter)
    else:
        return model.state_dict()


def _set_model_state_dict(model, state_dict, adapter_only=False):
    if adapter_only and is_peft_model(model):
        from peft import set_peft_model_state_dict

        return set_peft_model_state_dict(model, state_dict, adapter_name=model.active_adapter)
    else:
        return model.load_state_dict(state_dict)


def save_fsdp_model(fsdp_plugin, accelerator, model, output_dir, model_index=0, adapter_only=False):
    os.makedirs(output_dir, exist_ok=True)

    if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
        # FSDP raises error when single GPU is used with `offload_to_cpu=True` for FULL_STATE_DICT
        # so, only enable it when num_processes>1
        is_multi_process = accelerator.num_processes > 1
        fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process
        fsdp_plugin.state_dict_config.rank0_only = is_multi_process

    with FSDP.state_dict_type(
        model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
    ):
        state_dict = _get_model_state_dict(model, adapter_only=adapter_only)
        if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
            weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin"
            output_model_file = os.path.join(output_dir, weights_name)
            if accelerator.process_index == 0:
                logger.info(f"Saving model to {output_model_file}")
                torch.save(state_dict, output_model_file)
                logger.info(f"Model saved to {output_model_file}")
        elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
            weights_name = (
                f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin"
                if model_index == 0
                else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
            )
            output_model_file = os.path.join(output_dir, weights_name)
            logger.info(f"Saving model to {output_model_file}")
            torch.save(state_dict, output_model_file)
            logger.info(f"Model saved to {output_model_file}")
        elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
            ckpt_dir = os.path.join(output_dir, f"{FSDP_MODEL_NAME}_{model_index}")
            os.makedirs(ckpt_dir, exist_ok=True)
            logger.info(f"Saving model to {ckpt_dir}")
            state_dict = {"model": state_dict}

            dist_cp.save_state_dict(
                state_dict=state_dict,
                storage_writer=dist_cp.FileSystemWriter(ckpt_dir),
                planner=DefaultSavePlanner(),
            )
            logger.info(f"Model saved to {ckpt_dir}")


def load_fsdp_model(fsdp_plugin, accelerator, model, input_dir, model_index=0, adapter_only=False):
    accelerator.wait_for_everyone()
    if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
        # FSDP raises error when single GPU is used with `offload_to_cpu=True` for FULL_STATE_DICT
        # so, only enable it when num_processes>1
        is_multi_process = accelerator.num_processes > 1
        fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process
        fsdp_plugin.state_dict_config.rank0_only = is_multi_process
    with FSDP.state_dict_type(
        model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
    ):
        if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
            if type(model) != FSDP and accelerator.process_index != 0:
                if not fsdp_plugin.sync_module_states:
                    raise ValueError(
                        "Set the `sync_module_states` flag to `True` so that model states are synced across processes when "
                        "initializing FSDP object"
                    )
                return
            weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin"
            input_model_file = os.path.join(input_dir, weights_name)
            logger.info(f"Loading model from {input_model_file}")
            state_dict = torch.load(input_model_file)
            logger.info(f"Model loaded from {input_model_file}")
        elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
            weights_name = (
                f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin"
                if model_index == 0
                else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
            )
            input_model_file = os.path.join(input_dir, weights_name)
            logger.info(f"Loading model from {input_model_file}")
            state_dict = torch.load(input_model_file)
            logger.info(f"Model loaded from {input_model_file}")
        elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
            ckpt_dir = (
                os.path.join(input_dir, f"{FSDP_MODEL_NAME}_{model_index}")
                if f"{FSDP_MODEL_NAME}" not in input_dir
                else input_dir
            )
            logger.info(f"Loading model from {ckpt_dir}")
            state_dict = {"model": _get_model_state_dict(model, adapter_only=adapter_only)}
            dist_cp.load_state_dict(
                state_dict=state_dict,
                storage_reader=dist_cp.FileSystemReader(ckpt_dir),
                planner=DefaultLoadPlanner(),
            )
            state_dict = state_dict["model"]
            logger.info(f"Model loaded from {ckpt_dir}")
        load_result = _set_model_state_dict(model, state_dict, adapter_only=adapter_only)
    return load_result


def save_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, output_dir, optimizer_index=0):
    os.makedirs(output_dir, exist_ok=True)
    with FSDP.state_dict_type(
        model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
    ):
        optim_state = FSDP.optim_state_dict(model, optimizer)
        if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
            if accelerator.process_index == 0:
                optim_state_name = (
                    f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin"
                )
                output_optimizer_file = os.path.join(output_dir, optim_state_name)
                logger.info(f"Saving Optimizer state to {output_optimizer_file}")
                torch.save(optim_state, output_optimizer_file)
                logger.info(f"Optimizer state saved in {output_optimizer_file}")
        else:
            ckpt_dir = os.path.join(output_dir, f"{OPTIMIZER_NAME}_{optimizer_index}")
            os.makedirs(ckpt_dir, exist_ok=True)
            logger.info(f"Saving Optimizer state to {ckpt_dir}")
            dist_cp.save_state_dict(
                state_dict={"optimizer": optim_state},
                storage_writer=dist_cp.FileSystemWriter(ckpt_dir),
                planner=DefaultSavePlanner(),
            )
            logger.info(f"Optimizer state saved in {ckpt_dir}")


def load_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, input_dir, optimizer_index=0, adapter_only=False):
    accelerator.wait_for_everyone()
    with FSDP.state_dict_type(
        model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config
    ):
        if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
            optim_state = None
            if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
                optimizer_name = (
                    f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin"
                )
                input_optimizer_file = os.path.join(input_dir, optimizer_name)
                logger.info(f"Loading Optimizer state from {input_optimizer_file}")
                optim_state = torch.load(input_optimizer_file)
                logger.info(f"Optimizer state loaded from {input_optimizer_file}")
        else:
            ckpt_dir = (
                os.path.join(input_dir, f"{OPTIMIZER_NAME}_{optimizer_index}")
                if f"{OPTIMIZER_NAME}" not in input_dir
                else input_dir
            )
            logger.info(f"Loading Optimizer from {ckpt_dir}")
            optim_state = load_sharded_optimizer_state_dict(
                model_state_dict=_get_model_state_dict(model, adapter_only=adapter_only),
                optimizer_key="optimizer",
                storage_reader=dist_cp.FileSystemReader(ckpt_dir),
            )
            optim_state = optim_state["optimizer"]
            logger.info(f"Optimizer loaded from {ckpt_dir}")
        flattened_osd = FSDP.optim_state_dict_to_load(model=model, optim=optimizer, optim_state_dict=optim_state)
        optimizer.load_state_dict(flattened_osd)