Spaces:
Running
Running
File size: 29,926 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
#!/usr/bin/env python
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from ...utils import (
ComputeEnvironment,
DistributedType,
is_deepspeed_available,
is_mlu_available,
is_mps_available,
is_npu_available,
is_transformers_available,
is_xpu_available,
)
from ...utils.constants import (
DEEPSPEED_MULTINODE_LAUNCHERS,
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
TORCH_DYNAMO_MODES,
)
from .config_args import ClusterConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_distributed_mode,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_yes_no_to_bool,
)
def get_cluster_input():
distributed_type = _ask_options(
"Which type of machine are you using?",
["No distributed training", "multi-CPU", "multi-XPU", "multi-GPU", "multi-NPU", "multi-MLU", "TPU"],
_convert_distributed_mode,
)
machine_rank = 0
num_machines = 1
num_processes = 1
gpu_ids = None
main_process_ip = None
main_process_port = None
rdzv_backend = "static"
same_network = True
debug = False
if distributed_type in [
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_XPU,
DistributedType.MULTI_CPU,
]:
num_machines = _ask_field(
"How many different machines will you use (use more than 1 for multi-node training)? [1]: ",
int,
default=1,
)
if num_machines > 1:
machine_rank = _ask_options(
"What is the rank of this machine?",
list(range(num_machines)),
int,
)
main_process_ip = _ask_field(
"What is the IP address of the machine that will host the main process? ",
)
main_process_port = _ask_field(
"What is the port you will use to communicate with the main process? ",
int,
)
same_network = _ask_field(
"Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
if not same_network:
rdzv_backend = _ask_field(
"What rendezvous backend will you use? ('static', 'c10d', ...): ", default="static"
)
debug = _ask_field(
"Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if distributed_type == DistributedType.NO:
use_cpu = _ask_field(
"Do you want to run your training on CPU only (even if a GPU / Apple Silicon / Ascend NPU device is available)? [yes/NO]:",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
elif distributed_type == DistributedType.MULTI_CPU:
use_cpu = True
else:
use_cpu = False
ipex_config = {}
mpirun_config = {}
if use_cpu:
ipex_config["ipex"] = _ask_field(
"Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if distributed_type == DistributedType.MULTI_CPU:
use_mpirun = _ask_field(
"Do you want accelerate to launch mpirun? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_mpirun:
mpirun_hostfile = _ask_field(
"Please enter the path to the hostfile to use with mpirun [~/hostfile]: ",
str,
default="~/hostfile",
)
mpirun_config["mpirun_hostfile"] = os.path.expanduser(mpirun_hostfile.strip())
mpirun_config["mpirun_ccl"] = _ask_field("Enter the number of oneCCL worker threads [1]: ", default=1)
if (
not use_cpu
and is_xpu_available()
and distributed_type
not in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU, DistributedType.XLA]
):
ipex_config["use_xpu"] = _ask_field(
"Do you want to use XPU plugin to speed up training on XPU? [yes/NO]:",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
dynamo_config = {}
use_dynamo = _ask_field(
"Do you wish to optimize your script with torch dynamo?[yes/NO]:",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_dynamo:
prefix = "dynamo_"
dynamo_config[prefix + "backend"] = _ask_options(
"Which dynamo backend would you like to use?",
[x.lower() for x in DYNAMO_BACKENDS],
_convert_dynamo_backend,
default=2,
)
use_custom_options = _ask_field(
"Do you want to customize the defaults sent to torch.compile? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_custom_options:
dynamo_config[prefix + "mode"] = _ask_options(
"Which mode do you want to use?",
TORCH_DYNAMO_MODES,
lambda x: TORCH_DYNAMO_MODES[int(x)],
default=0,
)
dynamo_config[prefix + "use_fullgraph"] = _ask_field(
"Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
dynamo_config[prefix + "use_dynamic"] = _ask_field(
"Do you want to enable dynamic shape tracing? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
use_mps = not use_cpu and is_mps_available()
deepspeed_config = {}
if (
distributed_type
in [
DistributedType.MULTI_GPU,
DistributedType.MULTI_XPU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_MLU,
DistributedType.NO,
]
and not use_mps
):
use_deepspeed = _ask_field(
"Do you want to use DeepSpeed? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_deepspeed:
distributed_type = DistributedType.DEEPSPEED
assert (
is_deepspeed_available()
), "DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source"
if distributed_type == DistributedType.DEEPSPEED:
use_deepspeed_config = _ask_field(
"Do you want to specify a json file to a DeepSpeed config? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_deepspeed_config:
deepspeed_config["deepspeed_config_file"] = _ask_field(
"Please enter the path to the json DeepSpeed config file: ",
str,
default="none",
)
else:
deepspeed_config["zero_stage"] = _ask_options(
"What should be your DeepSpeed's ZeRO optimization stage?",
[0, 1, 2, 3],
int,
default=2,
)
deepspeed_devices = ["none", "cpu", "nvme"]
if deepspeed_config["zero_stage"] >= 2:
deepspeed_config["offload_optimizer_device"] = _ask_options(
"Where to offload optimizer states?", deepspeed_devices, lambda x: deepspeed_devices[int(x)]
)
deepspeed_config["offload_param_device"] = _ask_options(
"Where to offload parameters?", deepspeed_devices, lambda x: deepspeed_devices[int(x)]
)
if deepspeed_config["offload_param_device"] == "nvme":
deepspeed_config["offload_param_nvme_path"] = _ask_field(
"Nvme Path to offload parameters?",
str,
default="/nvme",
)
if deepspeed_config["offload_optimizer_device"] == "nvme":
deepspeed_config["offload_optimizer_nvme_path"] = _ask_field(
"Nvme Path to offload optimizer states?",
str,
default="/nvme",
)
deepspeed_config["gradient_accumulation_steps"] = _ask_field(
"How many gradient accumulation steps you're passing in your script? [1]: ",
int,
default=1,
)
use_gradient_clipping = _ask_field(
"Do you want to use gradient clipping? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_gradient_clipping:
deepspeed_config["gradient_clipping"] = _ask_field(
"What is the gradient clipping value? [1.0]: ",
float,
default=1.0,
)
if deepspeed_config["zero_stage"] == 3:
deepspeed_config["zero3_save_16bit_model"] = _ask_field(
"Do you want to save 16-bit model weights when using ZeRO Stage-3? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
deepspeed_config["zero3_init_flag"] = _ask_field(
"Do you want to enable `deepspeed.zero.Init` when using ZeRO Stage-3 for constructing massive models? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if deepspeed_config["zero3_init_flag"]:
if not is_transformers_available():
raise Exception(
"When `zero3_init_flag` is set, it requires Transformers to be installed. "
"Please run `pip3 install transformers`."
)
if num_machines > 1:
launcher_query = "Which Type of launcher do you want to use?"
deepspeed_config["deepspeed_multinode_launcher"] = _ask_options(
launcher_query,
DEEPSPEED_MULTINODE_LAUNCHERS,
lambda x: DEEPSPEED_MULTINODE_LAUNCHERS[int(x)],
)
if deepspeed_config["deepspeed_multinode_launcher"] != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
deepspeed_config["deepspeed_hostfile"] = _ask_field(
"DeepSpeed configures multi-node compute resources with hostfile. "
"Each row is of the format `hostname slots=[num_gpus]`, e.g., `localhost slots=2`; "
"for more information please refer official [documentation]"
"(https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node). "
"Please specify the location of hostfile: ",
str,
)
is_exclusion_filter = _ask_field(
"Do you want to specify exclusion filter string? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if is_exclusion_filter:
deepspeed_config["deepspeed_exclusion_filter"] = _ask_field(
"DeepSpeed exclusion filter string: ",
str,
)
is_inclusion_filter = _ask_field(
"Do you want to specify inclusion filter string? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if is_inclusion_filter:
deepspeed_config["deepspeed_inclusion_filter"] = _ask_field(
"DeepSpeed inclusion filter string: ",
str,
)
fsdp_config = {}
if distributed_type in [
DistributedType.MULTI_GPU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_XPU,
]:
use_fsdp = _ask_field(
"Do you want to use FullyShardedDataParallel? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_fsdp:
distributed_type = DistributedType.FSDP
if distributed_type == DistributedType.FSDP:
sharding_strategy_query = "What should be your sharding strategy?"
fsdp_config["fsdp_sharding_strategy"] = _ask_options(
sharding_strategy_query,
FSDP_SHARDING_STRATEGY,
lambda x: FSDP_SHARDING_STRATEGY[int(x)],
)
fsdp_config["fsdp_offload_params"] = _ask_field(
"Do you want to offload parameters and gradients to CPU? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
fsdp_wrap_query = "What should be your auto wrap policy?"
fsdp_config["fsdp_auto_wrap_policy"] = _ask_options(
fsdp_wrap_query,
FSDP_AUTO_WRAP_POLICY,
lambda x: FSDP_AUTO_WRAP_POLICY[int(x)],
)
if fsdp_config["fsdp_auto_wrap_policy"] == FSDP_AUTO_WRAP_POLICY[0]:
use_no_split_modules = _ask_field(
"Do you want to use the model's `_no_split_modules` to wrap. Only applicable for 🤗 Transformers [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if not use_no_split_modules:
fsdp_config["fsdp_transformer_layer_cls_to_wrap"] = _ask_field(
"Specify the comma-separated list of transformer layer class names (case-sensitive) to wrap ,e.g, :"
"`BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput` ...? : ",
str,
)
elif fsdp_config["fsdp_auto_wrap_policy"] == FSDP_AUTO_WRAP_POLICY[1]:
fsdp_config["fsdp_min_num_params"] = _ask_field(
"What should be your FSDP's minimum number of parameters for Default Auto Wrapping Policy? [1e8]: ",
int,
default=100000000,
)
fsdp_backward_prefetch_query = "What should be your FSDP's backward prefetch policy?"
fsdp_config["fsdp_backward_prefetch"] = _ask_options(
fsdp_backward_prefetch_query,
FSDP_BACKWARD_PREFETCH,
lambda x: FSDP_BACKWARD_PREFETCH[int(x)],
)
fsdp_state_dict_type_query = "What should be your FSDP's state dict type?"
fsdp_config["fsdp_state_dict_type"] = _ask_options(
fsdp_state_dict_type_query,
FSDP_STATE_DICT_TYPE,
lambda x: FSDP_STATE_DICT_TYPE[int(x)],
default=2,
)
fsdp_config["fsdp_forward_prefetch"] = _ask_field(
"Do you want to enable FSDP's forward prefetch policy? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
fsdp_config["fsdp_use_orig_params"] = _ask_field(
"Do you want to enable FSDP's `use_orig_params` feature? [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
fsdp_config["fsdp_cpu_ram_efficient_loading"] = _ask_field(
"Do you want to enable CPU RAM efficient model loading? Only applicable for 🤗 Transformers models. [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
if fsdp_config["fsdp_cpu_ram_efficient_loading"]:
fsdp_config["fsdp_sync_module_states"] = True
else:
fsdp_config["fsdp_sync_module_states"] = _ask_field(
"Do you want each individually wrapped FSDP unit to broadcast module parameters from rank 0 at the start? [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
megatron_lm_config = {}
if distributed_type in [DistributedType.MULTI_GPU]:
use_megatron_lm = _ask_field(
"Do you want to use Megatron-LM ? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_megatron_lm:
distributed_type = DistributedType.MEGATRON_LM
if distributed_type == DistributedType.MEGATRON_LM:
prefix = "megatron_lm_"
megatron_lm_config[prefix + "tp_degree"] = _ask_field(
"What is the Tensor Parallelism degree/size? [1]:",
int,
default=1,
error_message="Please enter an integer.",
)
if megatron_lm_config[prefix + "tp_degree"] > 1:
megatron_lm_config[prefix + "sequence_parallelism"] = _ask_field(
"Do you want to enable Sequence Parallelism? [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
megatron_lm_config[prefix + "pp_degree"] = _ask_field(
"What is the Pipeline Parallelism degree/size? [1]:",
int,
default=1,
error_message="Please enter an integer.",
)
if megatron_lm_config[prefix + "pp_degree"] > 1:
megatron_lm_config[prefix + "num_micro_batches"] = _ask_field(
"What is the number of micro-batches? [1]:",
int,
default=1,
error_message="Please enter an integer.",
)
megatron_lm_config[prefix + "recompute_activations"] = _ask_field(
"Do you want to enable selective activation recomputation? [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
megatron_lm_config[prefix + "use_distributed_optimizer"] = _ask_field(
"Do you want to use distributed optimizer "
"which shards optimizer state and gradients across data parallel ranks? [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
megatron_lm_config[prefix + "gradient_clipping"] = _ask_field(
"What is the gradient clipping value based on global L2 Norm (0 to disable)? [1.0]: ",
float,
default=1.0,
)
# TPU specific defaults
tpu_commands = None
tpu_command_file = None
tpu_downcast_bf16 = "no"
tpu_env = []
tpu_name = None
tpu_vm = None
tpu_zone = None
tpu_use_sudo = False
tpu_use_cluster = False
if distributed_type in [
DistributedType.MULTI_CPU,
DistributedType.MULTI_XPU,
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_NPU,
DistributedType.XLA,
]:
machine_type = str(distributed_type).split(".")[1].replace("MULTI_", "")
if machine_type == "TPU":
machine_type += " cores"
elif machine_type == "CPU":
machine_type = "processes"
else:
machine_type += "(s)"
num_processes = _ask_field(
f"How many {machine_type} should be used for distributed training? [1]:",
int,
default=1,
error_message="Please enter an integer.",
)
elif distributed_type in [DistributedType.FSDP, DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]:
num_processes = _ask_field(
"How many GPU(s) should be used for distributed training? [1]:",
int,
default=1,
error_message="Please enter an integer.",
)
else:
num_processes = 1
if (distributed_type == DistributedType.MULTI_GPU) and (num_machines == 1) and (num_processes == 1):
raise ValueError(
f"Specified distributed type {distributed_type} but only using 1 GPU on a single machine. Please select `No distributed training` for the type of machine you are using."
)
if (
distributed_type
in [
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_XPU,
DistributedType.NO,
]
and not use_cpu
and not use_mps
):
if is_npu_available():
machine_type = "NPU(s)"
elif is_mlu_available():
machine_type = "MLU(s)"
else:
machine_type = "GPU(s)"
gpu_ids = _ask_field(
f"What {machine_type} (by id) should be used for training on this machine as a comma-seperated list? [all]:",
default="all",
)
# CPU affinity is only supported on NVIDIA hardware for now
enable_cpu_affinity = False
if distributed_type == (DistributedType.NO, DistributedType.MULTI_GPU) and not use_cpu and not use_mps:
enable_cpu_affinity = _ask_field(
"Would you like to enable numa efficiency? (Currently only supported on NVIDIA hardware). [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if distributed_type == DistributedType.XLA:
mixed_precision = "no"
main_training_function = _ask_field(
"What is the name of the function in your script that should be launched in all parallel scripts? [main]: ",
default="main",
)
tpu_use_cluster = _ask_field(
"Are you using a TPU cluster? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if tpu_use_cluster:
tpu_name = _ask_field(
"What is the name of your TPU cluster? ",
default=None,
error_message="Please enter the name of your TPU cluster.",
)
tpu_zone = _ask_field(
"What is the zone of your TPU cluster? ",
default=None,
error_message="Please enter the zone of your TPU cluster.",
)
tpu_use_sudo = _ask_field(
"To run a python script in a TPU pod, should `sudo` be used? [yes/NO]: ",
default=False,
error_message="Please enter yes or no.",
)
run_commands = _ask_field(
"Do you have code you wish to run on startup in each pod? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if run_commands:
use_command_file = _ask_field(
"Is this code located in a bash script? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_command_file:
tpu_command_file = _ask_field(
"What is the path to your bash script? ",
default=None,
error_message="Please enter the path to your bash script.",
)
tpu_command_file = os.path.abspath(tpu_command_file)
else:
print("Please enter each command seperately you wish to run on startup in each pod.")
tpu_commands = []
another_command = True
while another_command:
tpu_commands.append(
_ask_field(
"Please enter a single command to be ran ",
default=None,
error_message="Please enter the commands you wish to run on startup in each pod as a single string.",
)
)
another_command = _ask_field(
"Do you wish to add another command? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
tpu_vm = _ask_field(
"If not using an instance group, what are the names of the Compute VM instances to be used, seperated by a comma: ",
default="",
).split(",")
tpu_env = _ask_field(
"What environment variables do you wish to set in each pod, seperated by a comma: ",
default="",
).split(",")
else:
main_training_function = "main"
if distributed_type == DistributedType.DEEPSPEED and use_deepspeed_config:
mixed_precision = None
else:
mixed_precision = _ask_options(
"Do you wish to use FP16 or BF16 (mixed precision)?",
["no", "fp16", "bf16", "fp8"],
_convert_mixed_precision,
)
if use_dynamo and mixed_precision == "no" and not use_cpu:
print(
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts."
)
if distributed_type == DistributedType.XLA and mixed_precision == "bf16":
tpu_downcast_bf16 = _ask_field(
"Should `torch.float` be cast as `bfloat16` and `torch.double` remain `float32` on TPUs?", default="no"
)
return ClusterConfig(
compute_environment=ComputeEnvironment.LOCAL_MACHINE,
distributed_type=distributed_type,
num_processes=num_processes,
gpu_ids=gpu_ids,
mixed_precision=mixed_precision,
downcast_bf16=tpu_downcast_bf16,
machine_rank=machine_rank,
num_machines=num_machines,
main_process_ip=main_process_ip,
main_process_port=main_process_port,
main_training_function=main_training_function,
deepspeed_config=deepspeed_config,
fsdp_config=fsdp_config,
megatron_lm_config=megatron_lm_config,
ipex_config=ipex_config,
mpirun_config=mpirun_config,
use_cpu=use_cpu,
rdzv_backend=rdzv_backend,
same_network=same_network,
commands=tpu_commands,
command_file=tpu_command_file,
tpu_env=tpu_env,
tpu_name=tpu_name,
tpu_vm=tpu_vm,
tpu_zone=tpu_zone,
tpu_use_sudo=tpu_use_sudo,
tpu_use_cluster=tpu_use_cluster,
dynamo_config=dynamo_config,
debug=debug,
enable_cpu_affinity=enable_cpu_affinity,
)
|