VishwaTechnologiesPvtLtd
remote_server
e7077fc
from .ISentenceCheck import ISentenceCheck
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
import language_tool_python
import torch
import nltk
nltk.download('punkt')
class SentenceCheck(ISentenceCheck):
def __init__(self):
self.tool = language_tool_python.LanguageTool('en-US', remote_server='https://api.languagetool.org')
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[SentenceCheck] Using device: {self.device}")
self.model = GPT2LMHeadModel.from_pretrained("gpt2").to(self.device)
self.tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
def is_grammatically_correct(self, text):
matches = self.tool.check(text)
return len(matches) == 0
def is_single_word_sentence(self, text):
return "nosentence" if len(text.split()) <= 1 else text
def looks_meaningful(self, text):
words = nltk.word_tokenize(text)
english_words = [word for word in words if word.isalpha()]
return len(english_words) / len(words) > 0.5
def get_perplexity(self, sentence):
inputs = self.tokenizer(sentence, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model(**inputs, labels=inputs["input_ids"])
loss = outputs.loss
return torch.exp(loss).item()
def IsSentenceCorrect(self, question: str) -> bool:
if self.is_single_word_sentence(question) == "nosentence":
return False
if not self.looks_meaningful(question):
return False
if not self.is_grammatically_correct(question):
return False
if self.get_perplexity(question) > 80:
return False
if len(question.split()) < 4 or len(question.split()) > 20:
return False
if not question.strip().endswith("?"):
return False
if question.split()[0].lower() not in [
"what", "how", "why", "when", "where", "is", "are", "can",
"should", "could", "who", "does", "do"
]:
return False
return True