# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def extract_model_from_parallel(model, keep_fp32_wrapper: bool = True): """ Extract a model from its distributed containers. Args: model (`torch.nn.Module`): The model to extract. keep_fp32_wrapper (`bool`, *optional*): Whether to remove mixed precision hooks from the model. Returns: `torch.nn.Module`: The extracted model. """ options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(model, options): model = model.module if not keep_fp32_wrapper: forward = getattr(model, "forward") original_forward = model.__dict__.pop("_original_forward", None) if original_forward is not None: while hasattr(forward, "__wrapped__"): forward = forward.__wrapped__ if forward == original_forward: break model.forward = forward if getattr(model, "_converted_to_transformer_engine", False): convert_model(model, to_transformer_engine=False) return model def wait_for_everyone(): """ Introduces a blocking point in the script, making sure all processes have reached this point before continuing. Make sure all processes will reach this instruction otherwise one of your processes will hang forever. """ PartialState().wait_for_everyone() def save(obj, f): """ Save the data to disk. Use in place of `torch.save()`. Args: obj: The data to save f: The file (or file-like object) to use to save the data """ if PartialState().distributed_type == DistributedType.TPU: xm.save(obj, f) elif PartialState().local_process_index == 0: torch.save(obj, f) @contextmanager def patch_environment(**kwargs): """ A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting. Will convert the values in `kwargs` to strings and upper-case all the keys. Example: ```python >>> import os >>> from accelerate.utils import patch_environment >>> with patch_environment(FOO="bar"): ... print(os.environ["FOO"]) # prints "bar" >>> print(os.environ["FOO"]) # raises KeyError ``` """ for key, value in kwargs.items(): os.environ[key.upper()] = str(value) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def get_pretty_name(obj): """ Gets a pretty name from `obj`. """ if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"): obj = getattr(obj, "__class__", obj) if hasattr(obj, "__qualname__"): return obj.__qualname__ if hasattr(obj, "__name__"): return obj.__name__ return str(obj) def merge_dicts(source, destination): """ Recursively merges two dictionaries. Args: source (`dict`): The dictionary to merge into `destination`. destination (`dict`): The dictionary to merge `source` into. """ for key, value in source.items(): if isinstance(value, dict): node = destination.setdefault(key, {}) merge_dicts(value, node) else: destination[key] = value return destination