Spaces:
Sleeping
Sleeping
File size: 15,105 Bytes
ffaa9fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
"""Provide blending functions and types.
Adapted from https://github.com/addisonElliott/pypdn/blob/master/pypdn/reader.py
and https://gitlab.com/inklabapp/pyora/-/blob/master/pyora/BlendNonSep.py
MIT License Copyright (c) 2020 FredHappyface
Credits to:
MIT License Copyright (c) 2019 Paul Jewell
For implementing blending from the Open Raster Image Spec
MIT License Copyright (c) 2018 Addison Elliott
For implementing blending from Paint.NET
MIT License Copyright (c) 2017 pashango
For implementing a number of blending functions used by other popular image
editors
"""
from __future__ import annotations
import warnings
import numpy as np
from PIL import Image
from .blendtype import BlendType
def normal(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.NORMAL."""
del background # we don't care about this
return foreground
def multiply(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.MULTIPLY."""
return np.clip(foreground * background, 0.0, 1.0)
def additive(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.ADDITIVE."""
return np.minimum(background + foreground, 1.0)
def colourburn(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.COLOURBURN."""
with np.errstate(divide="ignore"):
return np.where(
foreground != 0.0, np.maximum(1.0 - ((1.0 - background) / foreground), 0.0), 0.0
)
def colourdodge(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.COLOURDODGE."""
with np.errstate(divide="ignore"):
return np.where(foreground != 1.0, np.minimum(background / (1.0 - foreground), 1.0), 1.0)
def reflect(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.REFLECT."""
with np.errstate(divide="ignore"):
return np.where(
foreground != 1.0, np.minimum((background ** 2) / (1.0 - foreground), 1.0), 1.0
)
def glow(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.GLOW."""
with np.errstate(divide="ignore"):
return np.where(
background != 1.0, np.minimum((foreground ** 2) / (1.0 - background), 1.0), 1.0
)
def overlay(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.OVERLAY."""
return np.where(
background < 0.5,
2 * background * foreground,
1.0 - (2 * (1.0 - background) * (1.0 - foreground)),
)
def difference(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.DIFFERENCE."""
return np.abs(background - foreground)
def negation(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.NEGATION."""
return np.maximum(background - foreground, 0.0)
def lighten(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.LIGHTEN."""
return np.maximum(background, foreground)
def darken(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.DARKEN."""
return np.minimum(background, foreground)
def screen(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.SCREEN."""
return background + foreground - background * foreground
def xor(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.XOR."""
# XOR requires int values so convert to uint8
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return imageIntToFloat(imageFloatToInt(background) ^ imageFloatToInt(foreground))
def softlight(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.SOFTLIGHT."""
return (1.0 - background) * background * foreground + background * (
1.0 - (1.0 - background) * (1.0 - foreground)
)
def hardlight(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.HARDLIGHT."""
return np.where(
foreground < 0.5,
np.minimum(background * 2 * foreground, 1.0),
np.minimum(1.0 - ((1.0 - background) * (1.0 - (foreground - 0.5) * 2.0)), 1.0),
)
def grainextract(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.GRAINEXTRACT."""
return np.clip(background - foreground + 0.5, 0.0, 1.0)
def grainmerge(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.GRAINMERGE."""
return np.clip(background + foreground - 0.5, 0.0, 1.0)
def divide(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.DIVIDE."""
return np.minimum((256.0 / 255.0 * background) / (1.0 / 255.0 + foreground), 1.0)
def pinlight(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.PINLIGHT."""
return np.minimum(background, 2 * foreground) * (foreground < 0.5) + np.maximum(
background, 2 * (foreground - 0.5)
) * (foreground >= 0.5)
def vividlight(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.VIVIDLIGHT."""
return colourburn(background, foreground * 2) * (foreground < 0.5) + colourdodge(
background, 2 * (foreground - 0.5)
) * (foreground >= 0.5)
def exclusion(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.EXCLUSION."""
return background + foreground - (2.0 * background * foreground)
def _lum(colours: np.ndarray) -> np.ndarray:
"""Luminosity.
:param colours: x by x by 3 matrix of rgb color components of pixels
:return: x by x by 3 matrix of luminosity of pixels
"""
return (colours[:, :, 0] * 0.299) + (colours[:, :, 1] * 0.587) + (colours[:, :, 2] * 0.114)
def _setLum(originalColours: np.ndarray, newLuminosity: np.ndarray) -> np.ndarray:
"""Set a new luminosity value for the matrix of color."""
_colours = originalColours.copy()
_luminosity = _lum(_colours)
deltaLum = newLuminosity - _luminosity
_colours[:, :, 0] += deltaLum
_colours[:, :, 1] += deltaLum
_colours[:, :, 2] += deltaLum
_luminosity = _lum(_colours)
_minColours = np.min(_colours, axis=2)
_MaxColours = np.max(_colours, axis=2)
for i in range(_colours.shape[0]):
for j in range(_colours.shape[1]):
_colour = _colours[i][j]
newLuminosity = _luminosity[i, j]
minColour = _minColours[i, j]
maxColour = _MaxColours[i, j]
if minColour < 0:
_colours[i][j] = newLuminosity + (
((_colour - newLuminosity) * newLuminosity) / (newLuminosity - minColour)
)
if maxColour > 1:
_colours[i][j] = newLuminosity + (
((_colour - newLuminosity) * (1 - newLuminosity)) / (maxColour - newLuminosity)
)
return _colours
def _sat(colours: np.ndarray) -> np.ndarray:
"""Saturation.
:param colours: x by x by 3 matrix of rgb color components of pixels
:return: int of saturation of pixels
"""
return np.max(colours, axis=2) - np.min(colours, axis=2)
def _setSat(originalColours: np.ndarray, newSaturation: np.ndarray) -> np.ndarray:
"""Set a new saturation value for the matrix of color.
The current implementation cannot be vectorized in an efficient manner,
so it is very slow,
O(m*n) at least. This might be able to be improved with openCL if that is
the direction that the lib takes.
:param c: x by x by 3 matrix of rgb color components of pixels
:param s: int of the new saturation value for the matrix
:return: x by x by 3 matrix of luminosity of pixels
"""
_colours = originalColours.copy()
for i in range(_colours.shape[0]):
for j in range(_colours.shape[1]):
_colour = _colours[i][j]
minI = 0
midI = 1
maxI = 2
if _colour[midI] < _colour[minI]:
minI, midI = midI, minI
if _colour[maxI] < _colour[midI]:
midI, maxI = maxI, midI
if _colour[midI] < _colour[minI]:
minI, midI = midI, minI
if _colour[maxI] - _colour[minI] > 0.0:
_colours[i][j][midI] = ((_colour[midI] - _colour[minI]) * newSaturation[i, j]) / (
_colour[maxI] - _colour[minI]
)
_colours[i][j][maxI] = newSaturation[i, j]
else:
_colours[i][j][midI] = 0
_colours[i][j][maxI] = 0
_colours[i][j][minI] = 0
return _colours
def hue(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.HUE."""
return _setLum(_setSat(foreground, _sat(background)), _lum(background))
def saturation(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.SATURATION."""
return _setLum(_setSat(background, _sat(foreground)), _lum(background))
def colour(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.COLOUR."""
return _setLum(foreground, _lum(background))
def luminosity(background: np.ndarray, foreground: np.ndarray) -> np.ndarray:
"""BlendType.LUMINOSITY."""
return _setLum(background, _lum(foreground))
def destin(
backgroundAlpha: np.ndarray,
foregroundAlpha: np.ndarray,
backgroundColour: np.ndarray,
foregroundColour: np.ndarray,
):
"""'clip' composite mode.
All parts of 'layer above' which are alpha in 'layer below' will be made
also alpha in 'layer above'
(to whatever degree of alpha they were)
Destination which overlaps the source, replaces the source.
Fa = 0; Fb = αs
co = αb x Cb x αs
αo = αb x αs
"""
del foregroundColour # Not used by function
outAlpha = backgroundAlpha * foregroundAlpha
with np.errstate(divide="ignore", invalid="ignore"):
outRGB = np.divide(
np.multiply((backgroundAlpha * foregroundAlpha)[:, :, None], backgroundColour),
outAlpha[:, :, None],
)
return outRGB, outAlpha
def destout(
backgroundAlpha: np.ndarray,
foregroundAlpha: np.ndarray,
backgroundColour: np.ndarray,
foregroundColour: np.ndarray,
):
"""Reverse 'Clip' composite mode.
All parts of 'layer below' which are alpha in 'layer above' will be made
also alpha in 'layer below'
(to whatever degree of alpha they were)
"""
del foregroundColour # Not used by function
outAlpha = backgroundAlpha * (1 - foregroundAlpha)
with np.errstate(divide="ignore", invalid="ignore"):
outRGB = np.divide(
np.multiply((backgroundAlpha * (1 - foregroundAlpha))[:, :, None], backgroundColour),
outAlpha[:, :, None],
)
return outRGB, outAlpha
def destatop(
backgroundAlpha: np.ndarray,
foregroundAlpha: np.ndarray,
backgroundColour: np.ndarray,
foregroundColour: np.ndarray,
):
"""Place the layer below above the 'layer above' in places where the 'layer above' exists...
where 'layer below' does not exist, but 'layer above' does, place 'layer-above'
"""
outAlpha = (foregroundAlpha * (1 - backgroundAlpha)) + (backgroundAlpha * foregroundAlpha)
with np.errstate(divide="ignore", invalid="ignore"):
outRGB = np.divide(
np.multiply((foregroundAlpha * (1 - backgroundAlpha))[:, :, None], foregroundColour)
+ np.multiply((backgroundAlpha * foregroundAlpha)[:, :, None], backgroundColour),
outAlpha[:, :, None],
)
return outRGB, outAlpha
def srcatop(
backgroundAlpha: np.ndarray,
foregroundAlpha: np.ndarray,
backgroundColour: np.ndarray,
foregroundColour: np.ndarray,
):
"""Place the layer below above the 'layer above' in places where the 'layer above' exists."""
outAlpha = (foregroundAlpha * backgroundAlpha) + (backgroundAlpha * (1 - foregroundAlpha))
with np.errstate(divide="ignore", invalid="ignore"):
outRGB = np.divide(
np.multiply((foregroundAlpha * backgroundAlpha)[:, :, None], foregroundColour)
+ np.multiply((backgroundAlpha * (1 - foregroundAlpha))[:, :, None], backgroundColour),
outAlpha[:, :, None],
)
return outRGB, outAlpha
def imageIntToFloat(image: np.ndarray) -> np.ndarray:
"""Convert a numpy array representing an image to an array of floats.
Args:
image (np.ndarray): numpy array of ints
Returns:
np.ndarray: numpy array of floats
"""
return image / 255
def imageFloatToInt(image: np.ndarray) -> np.ndarray:
"""Convert a numpy array representing an image to an array of ints.
Args:
image (np.ndarray): numpy array of floats
Returns:
np.ndarray: numpy array of ints
"""
return (image * 255).astype(np.uint8)
def blend(background: np.ndarray, foreground: np.ndarray, blendType: BlendType) -> np.ndarray:
"""Blend pixels.
Args:
background (np.ndarray): background
foreground (np.ndarray): foreground
blendType (BlendType): the blend type
Returns:
np.ndarray: new array representing the image
background: np.ndarray,
foreground: np.ndarray and the return are in the form
[[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
...
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
...
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
...
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]]
"""
blendLookup = {
BlendType.NORMAL: normal,
BlendType.MULTIPLY: multiply,
BlendType.COLOURBURN: colourburn,
BlendType.COLOURDODGE: colourdodge,
BlendType.REFLECT: reflect,
BlendType.OVERLAY: overlay,
BlendType.DIFFERENCE: difference,
BlendType.LIGHTEN: lighten,
BlendType.DARKEN: darken,
BlendType.SCREEN: screen,
BlendType.SOFTLIGHT: softlight,
BlendType.HARDLIGHT: hardlight,
BlendType.GRAINEXTRACT: grainextract,
BlendType.GRAINMERGE: grainmerge,
BlendType.DIVIDE: divide,
BlendType.HUE: hue,
BlendType.SATURATION: saturation,
BlendType.COLOUR: colour,
BlendType.LUMINOSITY: luminosity,
BlendType.XOR: xor,
BlendType.NEGATION: negation,
BlendType.PINLIGHT: pinlight,
BlendType.VIVIDLIGHT: vividlight,
BlendType.EXCLUSION: exclusion,
}
if blendType not in blendLookup:
return normal(background, foreground)
return blendLookup[blendType](background, foreground)
def blendLayers(
background: Image.Image,
foreground: Image.Image,
blendType: BlendType | tuple[str, ...],
opacity: float = 1.0,
) -> Image.Image:
"""Blend layers using numpy array.
Args:
background (Image.Image): background layer
foreground (Image.Image): foreground layer (must be same size as background)
blendType (BlendType): The blendtype
opacity (float): The opacity of the foreground image
Returns:
Image.Image: combined image
"""
# Convert the Image.Image to a numpy array
npForeground: np.ndarray = imageIntToFloat(np.array(foreground.convert("RGBA")))
npBackground: np.ndarray = imageIntToFloat(np.array(background.convert("RGBA")))
# Get the alpha from the layers
backgroundAlpha = npBackground[:, :, 3]
foregroundAlpha = npForeground[:, :, 3] * opacity
combinedAlpha = backgroundAlpha * foregroundAlpha
# Get the colour from the layers
backgroundColor = npBackground[:, :, 0:3]
foregroundColor = npForeground[:, :, 0:3]
# Some effects require alpha
alphaFunc = {
BlendType.DESTIN: destin,
BlendType.DESTOUT: destout,
BlendType.SRCATOP: srcatop,
BlendType.DESTATOP: destatop,
}
if blendType in alphaFunc:
return Image.fromarray(
imageFloatToInt(
np.clip(
np.dstack(
alphaFunc[blendType](
backgroundAlpha, foregroundAlpha, backgroundColor, foregroundColor
)
),
a_min=0,
a_max=1,
)
)
)
# Get the colours and the alpha for the new image
colorComponents = (
(backgroundAlpha - combinedAlpha)[:, :, None] * backgroundColor
+ (foregroundAlpha - combinedAlpha)[:, :, None] * foregroundColor
+ combinedAlpha[:, :, None] * blend(backgroundColor, foregroundColor, blendType)
)
alphaComponent = backgroundAlpha + foregroundAlpha - combinedAlpha
return Image.fromarray(
imageFloatToInt(np.clip(np.dstack((colorComponents, alphaComponent)), a_min=0, a_max=1))
)
|