Spaces:
Sleeping
Sleeping
File size: 4,501 Bytes
ffaa9fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def extract_model_from_parallel(model, keep_fp32_wrapper: bool = True):
"""
Extract a model from its distributed containers.
Args:
model (`torch.nn.Module`):
The model to extract.
keep_fp32_wrapper (`bool`, *optional*):
Whether to remove mixed precision hooks from the model.
Returns:
`torch.nn.Module`: The extracted model.
"""
options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(model, options):
model = model.module
if not keep_fp32_wrapper:
forward = getattr(model, "forward")
original_forward = model.__dict__.pop("_original_forward", None)
if original_forward is not None:
while hasattr(forward, "__wrapped__"):
forward = forward.__wrapped__
if forward == original_forward:
break
model.forward = forward
if getattr(model, "_converted_to_transformer_engine", False):
convert_model(model, to_transformer_engine=False)
return model
def wait_for_everyone():
"""
Introduces a blocking point in the script, making sure all processes have reached this point before continuing.
<Tip warning={true}>
Make sure all processes will reach this instruction otherwise one of your processes will hang forever.
</Tip>
"""
PartialState().wait_for_everyone()
def save(obj, f):
"""
Save the data to disk. Use in place of `torch.save()`.
Args:
obj: The data to save
f: The file (or file-like object) to use to save the data
"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(obj, f)
elif PartialState().local_process_index == 0:
torch.save(obj, f)
@contextmanager
def patch_environment(**kwargs):
"""
A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting.
Will convert the values in `kwargs` to strings and upper-case all the keys.
Example:
```python
>>> import os
>>> from accelerate.utils import patch_environment
>>> with patch_environment(FOO="bar"):
... print(os.environ["FOO"]) # prints "bar"
>>> print(os.environ["FOO"]) # raises KeyError
```
"""
for key, value in kwargs.items():
os.environ[key.upper()] = str(value)
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def get_pretty_name(obj):
"""
Gets a pretty name from `obj`.
"""
if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"):
obj = getattr(obj, "__class__", obj)
if hasattr(obj, "__qualname__"):
return obj.__qualname__
if hasattr(obj, "__name__"):
return obj.__name__
return str(obj)
def merge_dicts(source, destination):
"""
Recursively merges two dictionaries.
Args:
source (`dict`): The dictionary to merge into `destination`.
destination (`dict`): The dictionary to merge `source` into.
"""
for key, value in source.items():
if isinstance(value, dict):
node = destination.setdefault(key, {})
merge_dicts(value, node)
else:
destination[key] = value
return destination
|