Spaces:
Sleeping
Sleeping
File size: 42,969 Bytes
ffaa9fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import json
import logging
import os
import re
import shutil
import tempfile
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from .imports import is_safetensors_available
from .offload import load_offloaded_weight, offload_weight, save_offload_index
if is_safetensors_available():
from safetensors import safe_open
from safetensors.torch import load_file as safe_load_file
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
logger = logging.getLogger(__name__)
def convert_file_size_to_int(size: Union[int, str]):
"""
Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).
Args:
size (`int` or `str`): The size to convert. Will be directly returned if an `int`.
Example:
```py
>>> convert_file_size_to_int("1MiB")
1048576
```
"""
if isinstance(size, int):
return size
if size.upper().endswith("GIB"):
return int(size[:-3]) * (2**30)
if size.upper().endswith("MIB"):
return int(size[:-3]) * (2**20)
if size.upper().endswith("KIB"):
return int(size[:-3]) * (2**10)
if size.upper().endswith("GB"):
int_size = int(size[:-2]) * (10**9)
return int_size // 8 if size.endswith("b") else int_size
if size.upper().endswith("MB"):
int_size = int(size[:-2]) * (10**6)
return int_size // 8 if size.endswith("b") else int_size
if size.upper().endswith("KB"):
int_size = int(size[:-2]) * (10**3)
return int_size // 8 if size.endswith("b") else int_size
raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.")
def dtype_byte_size(dtype: torch.dtype):
"""
Returns the size (in bytes) occupied by one parameter of type `dtype`.
Example:
```py
>>> dtype_byte_size(torch.float32)
4
```
"""
if dtype == torch.bool:
return 1 / 8
bit_search = re.search(r"[^\d](\d+)$", str(dtype))
if bit_search is None:
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
bit_size = int(bit_search.groups()[0])
return bit_size // 8
def set_module_tensor_to_device(
module: nn.Module,
tensor_name: str,
device: Union[int, str, torch.device],
value: Optional[torch.Tensor] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
):
"""
A helper function to set a given tensor (parameter of buffer) of a module on a specific device (note that doing
`param.to(device)` creates a new tensor not linked to the parameter, which is why we need this function).
Args:
module (`torch.nn.Module`):
The module in which the tensor we want to move lives.
param_name (`str`):
The full name of the parameter/buffer.
device (`int`, `str` or `torch.device`):
The device on which to set the tensor.
value (`torch.Tensor`, *optional*):
The value of the tensor (useful when going from the meta device to any other device).
dtype (`torch.dtype`, *optional*):
If passed along the value of the parameter will be cast to this `dtype`. Otherwise, `value` will be cast to
the dtype of the existing parameter in the model.
"""
# Recurse if needed
if "." in tensor_name:
splits = tensor_name.split(".")
for split in splits[:-1]:
new_module = getattr(module, split)
if new_module is None:
raise ValueError(f"{module} has no attribute {split}.")
module = new_module
tensor_name = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
is_buffer = tensor_name in module._buffers
old_value = getattr(module, tensor_name)
if old_value.device == torch.device("meta") and device not in ["meta", torch.device("meta")] and value is None:
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}.")
if value is not None:
if dtype is None:
# For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model
value = value.to(old_value.dtype)
elif not str(value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
value = value.to(dtype)
with torch.no_grad():
if value is None:
new_value = old_value.to(device)
elif isinstance(value, torch.Tensor):
new_value = value.to(device)
else:
new_value = torch.tensor(value, device=device)
if is_buffer:
module._buffers[tensor_name] = new_value
elif value is not None or torch.device(device) != module._parameters[tensor_name].device:
param_cls = type(module._parameters[tensor_name])
kwargs = module._parameters[tensor_name].__dict__
if param_cls.__name__ == "Int8Params":
new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(device)
else:
new_value = param_cls(new_value, requires_grad=old_value.requires_grad).to(device)
module._parameters[tensor_name] = new_value
def named_module_tensors(module: nn.Module, include_buffers: bool = True, recurse: bool = False):
"""
A helper function that gathers all the tensors (parameters + buffers) of a given module. If `include_buffers=True`
it's the same as doing `module.named_parameters(recurse=recurse) + module.named_buffers(recurse=recurse)`.
Args:
module (`torch.nn.Module`):
The module we want the tensors on.
include_buffer (`bool`, *optional*, defaults to `True`):
Whether or not to include the buffers in the result.
recurse (`bool`, *optional`, defaults to `False`):
Whether or not to go look in every submodule or just return the direct parameters and buffers.
"""
for named_parameter in module.named_parameters(recurse=recurse):
yield named_parameter
if include_buffers:
for named_buffer in module.named_buffers(recurse=recurse):
yield named_buffer
class FindTiedParametersResult(list):
"""
This is a subclass of a list to handle backward compatibility for Transformers. Do not rely on the fact this is not
a list or on the `values` method as in the future this will be removed.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def values(self):
# TODO: at the next Transformers release (4.28.0) issue a deprecation warning here.
return sum([x[1:] for x in self], [])
def find_tied_parameters(model: nn.Module, **kwargs):
"""
Find the tied parameters in a given model.
<Tip warning={true}>
The signature accepts keyword arguments, but they are for the recursive part of this function and you should ignore
them.
</Tip>
Args:
model (`torch.nn.Module`): The model to inspect.
Returns:
List[List[str]]: A list of lists of parameter names being all tied together.
Example:
```py
>>> from collections import OrderedDict
>>> import torch.nn as nn
>>> model = nn.Sequential(OrderedDict([("linear1", nn.Linear(4, 4)), ("linear2", nn.Linear(4, 4))]))
>>> model.linear2.weight = model.linear1.weight
>>> find_tied_parameters(model)
[['linear1.weight', 'linear2.weight']]
```
"""
# Initialize result and named_parameters before recursing.
named_parameters = kwargs.get("named_parameters", None)
prefix = kwargs.get("prefix", "")
result = kwargs.get("result", {})
if named_parameters is None:
named_parameters = {n: p for n, p in model.named_parameters()}
else:
# A tied parameter will not be in the full `named_parameters` seen above but will be in the `named_parameters`
# of the submodule it belongs to. So while recursing we track the names that are not in the initial
# `named_parameters`.
for name, parameter in model.named_parameters():
full_name = name if prefix == "" else f"{prefix}.{name}"
if full_name not in named_parameters:
# When we find one, it has to be one of the existing parameters.
for new_name, new_param in named_parameters.items():
if new_param is parameter:
if new_name not in result:
result[new_name] = []
result[new_name].append(full_name)
# Once we have treated direct parameters, we move to the child modules.
for name, child in model.named_children():
child_name = name if prefix == "" else f"{prefix}.{name}"
find_tied_parameters(child, named_parameters=named_parameters, prefix=child_name, result=result)
return FindTiedParametersResult([sorted([weight] + list(set(tied))) for weight, tied in result.items()])
def retie_parameters(model, tied_params):
"""
Reties tied parameters in a given model if the link was broken (for instance when adding hooks).
Args:
model (`torch.nn.Module`):
The model in which to retie parameters.
tied_params (`List[List[str]]`):
A mapping parameter name to tied parameter name as obtained by `find_tied_parameters`.
"""
for tied_group in tied_params:
param_to_tie = None
# First iteration of the loop will set param_to_tie, next ones will tie it to the others
for param_name in tied_group:
module = model
splits = param_name.split(".")
for split in splits[:-1]:
module = getattr(module, split)
if param_to_tie is None:
param_to_tie = getattr(module, splits[-1])
else:
setattr(module, splits[-1], param_to_tie)
def _get_proper_dtype(dtype: Union[str, torch.device]) -> torch.dtype:
"""
Just does torch.dtype(dtype) if necessary.
"""
if isinstance(dtype, str):
# We accept "torch.float16" or just "float16"
dtype = dtype.replace("torch.", "")
dtype = getattr(torch, dtype)
return dtype
def compute_module_sizes(
model: nn.Module,
dtype: Optional[Union[str, torch.device]] = None,
special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
):
"""
Compute the size of each submodule of a given model.
"""
if dtype is not None:
dtype = _get_proper_dtype(dtype)
dtype_size = dtype_byte_size(dtype)
if special_dtypes is not None:
special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
module_sizes = defaultdict(int)
for name, tensor in named_module_tensors(model, recurse=True):
if special_dtypes is not None and name in special_dtypes:
size = tensor.numel() * special_dtypes_size[name]
elif dtype is None:
size = tensor.numel() * dtype_byte_size(tensor.dtype)
else:
size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
name_parts = name.split(".")
for idx in range(len(name_parts) + 1):
module_sizes[".".join(name_parts[:idx])] += size
return module_sizes
def get_max_layer_size(
modules: List[Tuple[str, torch.nn.Module]], module_sizes: Dict[str, int], no_split_module_classes: List[str]
):
"""
Utility function that will scan a list of named modules and return the maximum size used by one full layer. The
definition of a layer being:
- a module with no direct children (just parameters and buffers)
- a module whose class name is in the list `no_split_module_classes`
Args:
modules (`List[Tuple[str, torch.nn.Module]]`):
The list of named modules where we want to determine the maximum layer size.
module_sizes (`Dict[str, int]`):
A dictionary mapping each layer name to its size (as generated by `compute_module_sizes`).
no_split_module_classes (`List[str]`):
A list of class names for layers we don't want to be split.
Returns:
`Tuple[int, List[str]]`: The maximum size of a layer with the list of layer names realizing that maximum size.
"""
max_size = 0
layer_names = []
modules_to_treat = modules.copy()
while len(modules_to_treat) > 0:
module_name, module = modules_to_treat.pop(0)
modules_children = list(module.named_children()) if isinstance(module, torch.nn.Module) else []
if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes:
# No splitting this one so we compare to the max_size
size = module_sizes[module_name]
if size > max_size:
max_size = size
layer_names = [module_name]
elif size == max_size:
layer_names.append(module_name)
else:
modules_to_treat = [(f"{module_name}.{n}", v) for n, v in modules_children] + modules_to_treat
return max_size, layer_names
def get_max_memory(max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None):
"""
Get the maximum memory available if nothing is passed, converts string to int otherwise.
"""
import psutil
if max_memory is None:
if not torch.cuda.is_available():
max_memory = {}
else:
# Make sure CUDA is initialized on each GPU to have the right memory info.
for i in range(torch.cuda.device_count()):
_ = torch.tensor([0], device=i)
max_memory = {i: torch.cuda.mem_get_info(i)[0] for i in range(torch.cuda.device_count())}
max_memory["cpu"] = psutil.virtual_memory().available
return max_memory
for key in max_memory:
if isinstance(max_memory[key], str):
max_memory[key] = convert_file_size_to_int(max_memory[key])
return max_memory
def clean_device_map(device_map: Dict[str, Union[int, str, torch.device]], module_name: str = ""):
"""
Cleans a device_map by grouping all submodules that go on the same device together.
"""
# Get the value of the current module and if there is only one split across several keys, regroup it.
prefix = "" if module_name == "" else f"{module_name}."
values = [v for k, v in device_map.items() if k.startswith(prefix)]
if len(set(values)) == 1 and len(values) > 1:
for k in [k for k in device_map if k.startswith(prefix)]:
del device_map[k]
device_map[module_name] = values[0]
# Recurse over the children
children_modules = [k for k in device_map.keys() if k.startswith(module_name) and len(k) > len(module_name)]
idx = len(module_name.split(".")) + 1 if len(module_name) > 0 else 1
children_modules = set(".".join(k.split(".")[:idx]) for k in children_modules)
for child in children_modules:
clean_device_map(device_map, module_name=child)
return device_map
def load_offloaded_weights(model, index, offload_folder):
"""
Loads the weights from the offload folder into the model.
Args:
model (`torch.nn.Module`):
The model to load the weights into.
index (`dict`):
A dictionary containing the parameter name and its metadata for each parameter that was offloaded from the
model.
offload_folder (`str`):
The folder where the offloaded weights are stored.
"""
if index is None or len(index) == 0:
# Nothing to do
return
for param_name, metadata in index.items():
tensor_file = os.path.join(offload_folder, f"{param_name}.dat")
weight = load_offloaded_weight(tensor_file, metadata)
set_module_tensor_to_device(model, param_name, "cpu", value=weight)
def get_balanced_memory(
model: nn.Module,
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
no_split_module_classes: Optional[List[str]] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
low_zero: bool = False,
):
"""
Compute a `max_memory` dictionary for [`infer_auto_device_map`] that will balance the use of each available GPU.
<Tip>
All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the
meta device (as it would if initialized within the `init_empty_weights` context manager).
</Tip>
Args:
model (`torch.nn.Module`):
The model to analyze.
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
no_split_module_classes (`List[str]`, *optional*):
A list of layer class names that should never be split across device (for instance any layer that has a
residual connection).
dtype (`str` or `torch.dtype`, *optional*):
If provided, the weights will be converted to that type when loaded.
special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*):
If provided, special dtypes to consider for some specific weights (will override dtype used as default for
all weights).
low_zero (`bool`, *optional*):
Minimizes the number of weights on GPU 0, which is convenient when it's used for other operations (like the
Transformers generate function).
"""
# Get default / clean up max_memory
max_memory = get_max_memory(max_memory)
if not torch.cuda.is_available():
return max_memory
num_devices = len([d for d in max_memory if torch.device(d).type == "cuda" and max_memory[d] > 0])
module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes)
per_gpu = module_sizes[""] // (num_devices - 1 if low_zero else num_devices)
# We can't just set the memory to model_size // num_devices as it will end being too small: each GPU will get
# slightly less layers and some layers will end up offload at the end. So this function computes a buffer size to
# add which is the biggest of:
# - the size of no split block (if applicable)
# - the mean of the layer sizes
if no_split_module_classes is None:
no_split_module_classes = []
elif not isinstance(no_split_module_classes, (list, tuple)):
no_split_module_classes = [no_split_module_classes]
# Identify the size of the no_split_block modules
if len(no_split_module_classes) > 0:
no_split_children = {}
for name, size in module_sizes.items():
if name == "":
continue
submodule = model
for submodule_name in name.split("."):
submodule = getattr(submodule, submodule_name)
class_name = submodule.__class__.__name__
if class_name in no_split_module_classes and class_name not in no_split_children:
no_split_children[class_name] = size
if set(no_split_children.keys()) == set(no_split_module_classes):
break
buffer = max(no_split_children.values()) if len(no_split_children) > 0 else 0
else:
buffer = 0
# Compute mean of final modules. In the first dict of module sizes, leaves are the parameters
leaves = [n for n in module_sizes if len([p for p in module_sizes if p.startswith(n) and len(p) > len(n)]) == 0]
module_sizes = {n: v for n, v in module_sizes.items() if n not in leaves}
# Once removed, leaves are the final modules.
leaves = [n for n in module_sizes if len([p for p in module_sizes if p.startswith(n) and len(p) > len(n)]) == 0]
mean_leaves = int(sum([module_sizes[n] for n in leaves]) / len(leaves))
buffer = int(1.25 * max(buffer, mean_leaves))
per_gpu += buffer
max_memory = get_max_memory(max_memory)
last_gpu = max(i for i in max_memory if isinstance(i, int) and max_memory[i] > 0)
# The last device is left with max_memory just in case the buffer is not enough.
for i in range(last_gpu):
max_memory[i] = min(0 if low_zero and i == 0 else per_gpu, max_memory[i])
if low_zero:
min_zero = max(0, module_sizes[""] - sum([max_memory[i] for i in range(1, num_devices)]))
max_memory[0] = min(min_zero, max_memory[0])
return max_memory
def infer_auto_device_map(
model: nn.Module,
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
no_split_module_classes: Optional[List[str]] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
special_dtypes: Optional[Dict[str, Union[str, torch.dtype]]] = None,
verbose: bool = False,
):
"""
Compute a device map for a given model giving priority to GPUs, then offload on CPU and finally offload to disk,
such that:
- we don't exceed the memory available of any of the GPU.
- if offload to the CPU is needed, there is always room left on GPU 0 to put back the layer offloaded on CPU that
has the largest size.
- if offload to the CPU is needed,we don't exceed the RAM available on the CPU.
- if offload to the disk is needed, there is always room left on the CPU to put back the layer offloaded on disk
that has the largest size.
<Tip>
All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the
meta device (as it would if initialized within the `init_empty_weights` context manager).
</Tip>
Args:
model (`torch.nn.Module`):
The model to analyze.
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
no_split_module_classes (`List[str]`, *optional*):
A list of layer class names that should never be split across device (for instance any layer that has a
residual connection).
dtype (`str` or `torch.dtype`, *optional*):
If provided, the weights will be converted to that type when loaded.
special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*):
If provided, special dtypes to consider for some specific weights (will override dtype used as default for
all weights).
verbose (`bool`, *optional*, defaults to `False`):
Whether or not to provide debugging statements as the function builds the device_map.
"""
# Get default / clean up max_memory
max_memory = get_max_memory(max_memory)
if no_split_module_classes is None:
no_split_module_classes = []
elif not isinstance(no_split_module_classes, (list, tuple)):
no_split_module_classes = [no_split_module_classes]
devices = list(max_memory.keys())
gpus = [device for device in devices if device != "cpu"]
if "disk" not in devices:
devices.append("disk")
# Devices that need to keep space for a potential offloaded layer.
main_devices = [gpus[0], "cpu"] if len(gpus) > 0 else ["cpu"]
module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes)
tied_parameters = find_tied_parameters(model)
device_map = {}
current_device = 0
current_memory_used = 0
# Direct submodules and parameters
modules_to_treat = (
list(model.named_parameters(recurse=False))
+ list(model.named_children())
+ list(model.named_buffers(recurse=False))
)
# Initialize maximum largest layer, to know which space to keep in memory
max_layer_size, max_layer_names = get_max_layer_size(modules_to_treat, module_sizes, no_split_module_classes)
# Ready ? This is going to be a bit messy.
while len(modules_to_treat) > 0:
name, module = modules_to_treat.pop(0)
if verbose:
print(f"\nTreating module {name}.")
# Max size in the remaining layers may have changed since we took one, so we maybe update it.
max_layer_names = [n for n in max_layer_names if not n.startswith(name)]
if len(max_layer_names) == 0:
max_layer_size, max_layer_names = get_max_layer_size(
[(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
module_sizes,
no_split_module_classes,
)
# Assess size needed
module_size = module_sizes[name]
# We keep relevant tied parameters only: one of the tied parameters in the group is inside the current module
# and the other is not.
tied_param_goups = [
tied_group
for tied_group in tied_parameters
if any(name in k for k in tied_group) and not all(name in k for k in tied_group)
]
if verbose and len(tied_param_goups) > 0:
print(f" Found the relevant tied param groups {tied_param_goups}")
# Then we keep track of all the parameters that are tied to the current module, but not in the current module
tied_params = sum([[p for p in tied_group if name not in p] for tied_group in tied_param_goups], [])
if verbose and len(tied_params) > 0:
print(f" So those parameters need to be taken into account {tied_params}")
device = devices[current_device]
current_max_size = max_memory[device] if device != "disk" else None
# Reduce max size available by the largest layer.
if devices[current_device] in main_devices:
current_max_size = current_max_size - max_layer_size
# Case 1 -> We're too big!
if current_max_size is not None and current_memory_used + module_size > current_max_size:
# Split or not split?
modules_children = list(module.named_children())
if verbose:
print(
f"Not enough space on {devices[current_device]} to put {name} (space available "
f"{current_max_size-current_memory_used}, module size {module_size})."
)
if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes:
# -> no split, we go to the next device
if verbose:
print("This module cannot be split, going to the next device.")
current_device += 1
modules_to_treat = [(name, module)] + modules_to_treat
current_memory_used = 0
else:
# -> split, we replace the module studied by its children + parameters
if verbose:
print(f"Splitting {name}.")
modules_children = list(module.named_parameters(recurse=False)) + modules_children
modules_to_treat = [(f"{name}.{n}", v) for n, v in modules_children] + modules_to_treat
# Update the max layer size.
max_layer_size, max_layer_names = get_max_layer_size(
[(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
module_sizes,
no_split_module_classes,
)
# Case 2, it fits! We're not entirely out of the wood though, because we may have some tied parameters.
elif len(tied_params) > 0:
# First locate all tied modules
tied_module_names = []
tied_modules = []
for tied_param in tied_params:
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n in tied_param][0]
tied_module_names.append(modules_to_treat[tied_module_index][0])
tied_modules.append(modules_to_treat[tied_module_index][1])
if verbose:
print(
f" It looks like {name} is going to fit on {devices[current_device]} but we have tied "
f"parameters to account for.\n - Names {tied_params}\n - Module names {tied_module_names}"
)
# Let's see if it all fits first
module_size_with_ties = module_size
for tied_param, tied_module_name in zip(tied_params, tied_module_names):
module_size_with_ties += module_sizes[tied_module_name] - module_sizes[tied_param]
if current_max_size is None or current_memory_used + module_size_with_ties <= current_max_size:
# We really really fit!
if verbose:
print(f"Putting {name} and {tied_module_names} on {devices[current_device]}.")
current_memory_used += module_size_with_ties
device_map[name] = devices[current_device]
for tied_module_name in tied_module_names:
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][0]
modules_to_treat.pop(tied_module_index)
device_map[tied_module_name] = devices[current_device]
else:
# We don't fit with the tied modules. Next question is: can we split one of the tied modules to make it
# smaller or do we need to go on the next device?
if verbose:
print(
f"Not enough space on {devices[current_device]} to put {name} and {tied_module_names} (space "
f"available {current_max_size-current_memory_used}, needed size {module_size_with_ties})."
)
split_happened = False
for tied_module_name, tied_module in zip(tied_module_names, tied_modules):
tied_module_children = list(tied_module.named_children())
if len(tied_module_children) == 0 or tied_module.__class__.__name__ in no_split_module_classes:
# can't break this one.
continue
if verbose:
print(f"Splitting {tied_module_name}.")
tied_module_children = list(tied_module.named_parameters(recurse=False)) + tied_module_children
tied_module_children = [(f"{tied_module_name}.{n}", v) for n, v in tied_module_children]
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][0]
modules_to_treat = (
[(name, module)]
+ modules_to_treat[:tied_module_index]
+ tied_module_children
+ modules_to_treat[tied_module_index + 1 :]
)
# Update the max layer size.
max_layer_size, max_layer_names = get_max_layer_size(
[(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)],
module_sizes,
no_split_module_classes,
)
split_happened = True
break
if not split_happened:
# If the tied module is not split, we go to the next device
if verbose:
print("None of the tied module can be split, going to the next device.")
current_device += 1
modules_to_treat = [(name, module)] + modules_to_treat
current_memory_used = 0
else:
if verbose:
print(f"Putting {name} on {devices[current_device]}.")
current_memory_used += module_size
device_map[name] = devices[current_device]
return clean_device_map(device_map)
def check_device_map(model: nn.Module, device_map: Dict[str, Union[int, str, torch.device]]):
"""
Checks a device map covers everything in a given model.
Args:
model (`torch.nn.Module`): The model to check the device map against.
device_map (`Dict[str, Union[int, str, torch.device]]`): The device map to check.
"""
all_model_tensors = [name for name, _ in model.state_dict().items()]
for module_name in device_map.keys():
all_model_tensors = [name for name in all_model_tensors if not name.startswith(module_name)]
if len(all_model_tensors) > 0:
non_covered_params = ", ".join(all_model_tensors)
raise ValueError(
f"The device_map provided does not give any device for the following parameters: {non_covered_params}"
)
def load_state_dict(checkpoint_file, device_map=None):
"""
Load a checkpoint from a given file. If the checkpoint is in the safetensors format and a device map is passed, the
weights can be fast-loaded directly on the GPU.
Args:
checkpoint_file (`str`): The path to the checkpoint to load.
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
name, once a given module name is inside, every submodule of it will be sent to the same device.
"""
if checkpoint_file.endswith(".safetensors"):
if not is_safetensors_available():
raise ImportError(
f"To load {checkpoint_file}, the `safetensors` library is necessary `pip install safetensors`."
)
with safe_open(checkpoint_file, framework="pt") as f:
metadata = f.metadata()
weight_names = f.keys()
if metadata is None:
logger.warn(
f"The safetensors archive passed at {checkpoint_file} does not contain metadata. "
"Make sure to save your model with the `save_pretrained` method. Defaulting to 'pt' metadata."
)
metadata = {"format": "pt"}
if metadata.get("format") not in ["pt", "tf", "flax"]:
raise OSError(
f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
"you save your model with the `save_pretrained` method."
)
elif metadata["format"] != "pt":
raise ValueError(f"The checkpoint passed was saved with {metadata['format']}, we need a the pt format.")
if device_map is None:
return safe_load_file(checkpoint_file)
else:
devices = [device for device in device_map.values() if device not in ["disk"]]
# if we only have one device we can load everything directly
if len(devices) == 1:
return safe_load_file(checkpoint_file, device=devices[0])
# cpu device should always exist as fallback option
if "cpu" not in devices:
devices.append("cpu")
# For each device, get the weights that go there
device_weights = {device: [] for device in devices}
for module_name, device in device_map.items():
if device in devices:
device_weights[device].extend([k for k in weight_names if k.startswith(module_name)])
# all weights that haven't defined a device should be loaded on CPU
device_weights["cpu"].extend([k for k in weight_names if k not in sum(device_weights.values(), [])])
tensors = {}
for device in devices:
with safe_open(checkpoint_file, framework="pt", device=device) as f:
for key in device_weights[device]:
tensors[key] = f.get_tensor(key)
return tensors
else:
return torch.load(checkpoint_file)
def load_checkpoint_in_model(
model: nn.Module,
checkpoint: Union[str, os.PathLike],
device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None,
offload_folder: Optional[Union[str, os.PathLike]] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
offload_state_dict: bool = False,
offload_buffers: bool = False,
):
"""
Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
loaded.
<Tip warning={true}>
Once loaded across devices, you still need to call [`dispatch_model`] on your model to make it able to run. To
group the checkpoint loading and dispatch in one single call, use [`load_checkpoint_and_dispatch`].
</Tip>
Args:
model (`torch.nn.Module`):
The model in which we want to load a checkpoint.
checkpoint (`str` or `os.PathLike`):
The folder checkpoint to load. It can be:
- a path to a file containing a whole model state dict
- a path to a `.json` file containing the index to a sharded checkpoint
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
name, once a given module name is inside, every submodule of it will be sent to the same device.
offload_folder (`str` or `os.PathLike`, *optional*):
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
dtype (`str` or `torch.dtype`, *optional*):
If provided, the weights will be converted to that type when loaded.
offload_state_dict (`bool`, *optional*, defaults to `False`):
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
the weight of the CPU state dict + the biggest shard does not fit.
offload_buffers (`bool`, *optional*, defaults to `False):
Whether or not to include the buffers in the weights offloaded to disk.
"""
tied_params = find_tied_parameters(model)
if offload_folder is None and device_map is not None and "disk" in device_map.values():
raise ValueError(
"At least one of the model submodule will be offloaded to disk, please pass along an `offload_folder`."
)
elif offload_folder is not None and device_map is not None and "disk" in device_map.values():
os.makedirs(offload_folder, exist_ok=True)
if isinstance(dtype, str):
# We accept "torch.float16" or just "float16"
dtype = dtype.replace("torch.", "")
dtype = getattr(torch, dtype)
checkpoint_files = None
index_filename = None
if os.path.isfile(checkpoint):
if str(checkpoint).endswith(".json"):
index_filename = checkpoint
else:
checkpoint_files = [checkpoint]
elif os.path.isdir(checkpoint):
potential_index = [f for f in os.listdir(checkpoint) if f.endswith(".index.json")]
if len(potential_index) == 0:
raise ValueError(f"{checkpoint} is not a folder containing a `.index.json` file.")
elif len(potential_index) == 1:
index_filename = os.path.join(checkpoint, potential_index[0])
else:
raise ValueError(f"{checkpoint} containing more than one `.index.json` file, delete the irrelevant ones.")
else:
raise ValueError(
"`checkpoint` should be the path to a file containing a whole state dict, or the index of a sharded "
f"checkpoint, or a folder containing a sharded checkpoint, but got {checkpoint}."
)
if index_filename is not None:
checkpoint_folder = os.path.split(index_filename)[0]
with open(index_filename, "r") as f:
index = json.loads(f.read())
if "weight_map" in index:
index = index["weight_map"]
checkpoint_files = sorted(list(set(index.values())))
checkpoint_files = [os.path.join(checkpoint_folder, f) for f in checkpoint_files]
# Logic for missing/unexepected keys goes here.
offload_index = {}
if offload_state_dict:
state_dict_folder = tempfile.mkdtemp()
state_dict_index = {}
buffer_names = [name for name, _ in model.named_buffers()]
for checkpoint_file in checkpoint_files:
checkpoint = load_state_dict(checkpoint_file, device_map=device_map)
if device_map is None:
model.load_state_dict(checkpoint, strict=False)
else:
for param_name, param in checkpoint.items():
module_name = param_name
while len(module_name) > 0 and module_name not in device_map:
module_name = ".".join(module_name.split(".")[:-1])
if module_name == "" and "" not in device_map:
# TODO: group all errors and raise at the end.
raise ValueError(f"{param_name} doesn't have any device set.")
param_device = device_map[module_name]
if param_device == "disk":
if offload_buffers or param_name not in buffer_names:
set_module_tensor_to_device(model, param_name, "meta")
offload_weight(param, param_name, offload_folder, index=offload_index)
elif param_device == "cpu" and offload_state_dict:
set_module_tensor_to_device(model, param_name, "meta")
offload_weight(param, param_name, state_dict_folder, index=state_dict_index)
else:
set_module_tensor_to_device(model, param_name, param_device, value=param, dtype=dtype)
# Force Python to clean up.
del checkpoint
gc.collect()
save_offload_index(offload_index, offload_folder)
# Load back offloaded state dict on CPU
if offload_state_dict:
load_offloaded_weights(model, state_dict_index, state_dict_folder)
shutil.rmtree(state_dict_folder)
retie_parameters(model, tied_params)
|