Update app.py
Browse files
app.py
CHANGED
|
@@ -3,58 +3,56 @@ import torch
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
| 5 |
import torchaudio
|
| 6 |
-
import numpy as np
|
| 7 |
|
| 8 |
-
# Define emotion labels
|
| 9 |
emotion_labels = ["angry", "calm", "disgust", "fearful", "happy", "neutral", "sad", "surprised"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load model and processor
|
| 12 |
model_name = "Dpngtm/wav2vec2-emotion-recognition"
|
| 13 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
| 14 |
processor = Wav2Vec2Processor.from_pretrained(model_name, num_labels=len(emotion_labels))
|
| 15 |
|
| 16 |
-
#
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
model.to(device)
|
| 19 |
model.eval()
|
| 20 |
|
| 21 |
-
# At the top with other global variables
|
| 22 |
-
emotion_icons = {
|
| 23 |
-
"angry": "π ",
|
| 24 |
-
"calm": "π",
|
| 25 |
-
"disgust": "π€’",
|
| 26 |
-
"fearful": "π¨",
|
| 27 |
-
"happy": "π",
|
| 28 |
-
"neutral": "π",
|
| 29 |
-
"sad": "π’",
|
| 30 |
-
"surprised": "π²"
|
| 31 |
-
}
|
| 32 |
-
|
| 33 |
def recognize_emotion(audio):
|
| 34 |
try:
|
|
|
|
| 35 |
if audio is None:
|
| 36 |
-
return {f"{emotion} {emotion_icons[emotion]}": 0 for emotion in emotion_labels}
|
| 37 |
-
|
|
|
|
| 38 |
audio_path = audio if isinstance(audio, str) else audio.name
|
| 39 |
speech_array, sampling_rate = torchaudio.load(audio_path)
|
| 40 |
|
|
|
|
| 41 |
duration = speech_array.shape[1] / sampling_rate
|
| 42 |
if duration > 60:
|
| 43 |
return {
|
| 44 |
"Error": "Audio too long (max 1 minute)",
|
| 45 |
-
**{f"{emotion} {emotion_icons[emotion]}": 0 for emotion in emotion_labels}
|
| 46 |
}
|
| 47 |
|
|
|
|
| 48 |
if sampling_rate != 16000:
|
| 49 |
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
|
| 50 |
speech_array = resampler(speech_array)
|
| 51 |
|
|
|
|
| 52 |
if speech_array.shape[0] > 1:
|
| 53 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
| 54 |
-
|
|
|
|
| 55 |
speech_array = speech_array / torch.max(torch.abs(speech_array))
|
| 56 |
speech_array = speech_array.squeeze().numpy()
|
| 57 |
|
|
|
|
| 58 |
inputs = processor(speech_array, sampling_rate=16000, return_tensors='pt', padding=True)
|
| 59 |
input_values = inputs.input_values.to(device)
|
| 60 |
|
|
@@ -62,32 +60,28 @@ def recognize_emotion(audio):
|
|
| 62 |
outputs = model(input_values)
|
| 63 |
logits = outputs.logits
|
| 64 |
probs = F.softmax(logits, dim=-1)[0].cpu().numpy()
|
| 65 |
-
|
| 66 |
-
# Ensure probabilities sum to 1 and convert to percentages
|
| 67 |
-
probs = probs / probs.sum() # Normalize to ensure sum is 1
|
| 68 |
|
|
|
|
| 69 |
confidence_scores = {
|
| 70 |
-
f"{emotion} {emotion_icons[emotion]}": float(prob * 100)
|
| 71 |
for emotion, prob in zip(emotion_labels, probs)
|
| 72 |
}
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
key=lambda x: x[1],
|
| 77 |
-
reverse=True
|
| 78 |
-
))
|
| 79 |
-
|
| 80 |
return sorted_scores
|
| 81 |
-
|
| 82 |
except Exception as e:
|
|
|
|
| 83 |
return {
|
| 84 |
"Error": str(e),
|
| 85 |
-
**{f"{emotion} {emotion_icons[emotion]}": 0 for emotion in emotion_labels}
|
| 86 |
}
|
| 87 |
|
| 88 |
-
#
|
| 89 |
supported_emotions = " | ".join([f"{emotion_icons[emotion]} {emotion}" for emotion in emotion_labels])
|
| 90 |
|
|
|
|
| 91 |
interface = gr.Interface(
|
| 92 |
fn=recognize_emotion,
|
| 93 |
inputs=gr.Audio(
|
|
@@ -115,11 +109,10 @@ interface = gr.Interface(
|
|
| 115 |
"""
|
| 116 |
)
|
| 117 |
|
| 118 |
-
|
| 119 |
if __name__ == "__main__":
|
| 120 |
interface.launch(
|
| 121 |
share=True,
|
| 122 |
debug=True,
|
| 123 |
server_name="0.0.0.0",
|
| 124 |
server_port=7860
|
| 125 |
-
)
|
|
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
| 5 |
import torchaudio
|
|
|
|
| 6 |
|
| 7 |
+
# Define emotion labels and corresponding icons
|
| 8 |
emotion_labels = ["angry", "calm", "disgust", "fearful", "happy", "neutral", "sad", "surprised"]
|
| 9 |
+
emotion_icons = {
|
| 10 |
+
"angry": "π ", "calm": "π", "disgust": "π€’", "fearful": "π¨",
|
| 11 |
+
"happy": "π", "neutral": "π", "sad": "π’", "surprised": "π²"
|
| 12 |
+
}
|
| 13 |
|
| 14 |
# Load model and processor
|
| 15 |
model_name = "Dpngtm/wav2vec2-emotion-recognition"
|
| 16 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
| 17 |
processor = Wav2Vec2Processor.from_pretrained(model_name, num_labels=len(emotion_labels))
|
| 18 |
|
| 19 |
+
# Set device
|
| 20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
model.to(device)
|
| 22 |
model.eval()
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def recognize_emotion(audio):
|
| 25 |
try:
|
| 26 |
+
# Handle case where no audio is provided
|
| 27 |
if audio is None:
|
| 28 |
+
return {f"{emotion} {emotion_icons[emotion]}": 0.0 for emotion in emotion_labels}
|
| 29 |
+
|
| 30 |
+
# Load and preprocess the audio
|
| 31 |
audio_path = audio if isinstance(audio, str) else audio.name
|
| 32 |
speech_array, sampling_rate = torchaudio.load(audio_path)
|
| 33 |
|
| 34 |
+
# Limit audio length to 1 minute (60 seconds)
|
| 35 |
duration = speech_array.shape[1] / sampling_rate
|
| 36 |
if duration > 60:
|
| 37 |
return {
|
| 38 |
"Error": "Audio too long (max 1 minute)",
|
| 39 |
+
**{f"{emotion} {emotion_icons[emotion]}": 0.0 for emotion in emotion_labels}
|
| 40 |
}
|
| 41 |
|
| 42 |
+
# Resample audio if not at 16kHz
|
| 43 |
if sampling_rate != 16000:
|
| 44 |
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
|
| 45 |
speech_array = resampler(speech_array)
|
| 46 |
|
| 47 |
+
# Convert stereo to mono if necessary
|
| 48 |
if speech_array.shape[0] > 1:
|
| 49 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
| 50 |
+
|
| 51 |
+
# Normalize audio
|
| 52 |
speech_array = speech_array / torch.max(torch.abs(speech_array))
|
| 53 |
speech_array = speech_array.squeeze().numpy()
|
| 54 |
|
| 55 |
+
# Process audio with the model
|
| 56 |
inputs = processor(speech_array, sampling_rate=16000, return_tensors='pt', padding=True)
|
| 57 |
input_values = inputs.input_values.to(device)
|
| 58 |
|
|
|
|
| 60 |
outputs = model(input_values)
|
| 61 |
logits = outputs.logits
|
| 62 |
probs = F.softmax(logits, dim=-1)[0].cpu().numpy()
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# Convert probabilities to percentages and format results
|
| 65 |
confidence_scores = {
|
| 66 |
+
f"{emotion} {emotion_icons[emotion]}": round(float(prob * 100), 2)
|
| 67 |
for emotion, prob in zip(emotion_labels, probs)
|
| 68 |
}
|
| 69 |
|
| 70 |
+
# Sort scores in descending order
|
| 71 |
+
sorted_scores = dict(sorted(confidence_scores.items(), key=lambda x: x[1], reverse=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
return sorted_scores
|
| 73 |
+
|
| 74 |
except Exception as e:
|
| 75 |
+
# Return error message along with zeroed-out emotion scores
|
| 76 |
return {
|
| 77 |
"Error": str(e),
|
| 78 |
+
**{f"{emotion} {emotion_icons[emotion]}": 0.0 for emotion in emotion_labels}
|
| 79 |
}
|
| 80 |
|
| 81 |
+
# Supported emotions for display
|
| 82 |
supported_emotions = " | ".join([f"{emotion_icons[emotion]} {emotion}" for emotion in emotion_labels])
|
| 83 |
|
| 84 |
+
# Gradio Interface setup
|
| 85 |
interface = gr.Interface(
|
| 86 |
fn=recognize_emotion,
|
| 87 |
inputs=gr.Audio(
|
|
|
|
| 109 |
"""
|
| 110 |
)
|
| 111 |
|
|
|
|
| 112 |
if __name__ == "__main__":
|
| 113 |
interface.launch(
|
| 114 |
share=True,
|
| 115 |
debug=True,
|
| 116 |
server_name="0.0.0.0",
|
| 117 |
server_port=7860
|
| 118 |
+
)
|