Update app.py
Browse files
app.py
CHANGED
|
@@ -16,70 +16,46 @@ processor = Wav2Vec2Processor.from_pretrained(model_name, num_labels=len(emotion
|
|
| 16 |
# Define device
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
model.to(device)
|
| 19 |
-
model.eval()
|
| 20 |
|
| 21 |
def recognize_emotion(audio):
|
| 22 |
-
"""
|
| 23 |
-
Predicts the emotion and confidence scores from an audio file.
|
| 24 |
-
Max duration: 60 seconds
|
| 25 |
-
"""
|
| 26 |
try:
|
| 27 |
if audio is None:
|
| 28 |
return {emotion: 0.0 for emotion in emotion_labels}
|
| 29 |
|
| 30 |
-
# Handle audio input
|
| 31 |
audio_path = audio if isinstance(audio, str) else audio.name
|
| 32 |
-
|
| 33 |
-
# Load and resample audio
|
| 34 |
speech_array, sampling_rate = torchaudio.load(audio_path)
|
| 35 |
|
| 36 |
-
# Check audio duration
|
| 37 |
duration = speech_array.shape[1] / sampling_rate
|
| 38 |
-
if duration > 60:
|
| 39 |
return {
|
| 40 |
"Error": "Audio too long (max 1 minute)",
|
| 41 |
**{emotion: 0.0 for emotion in emotion_labels}
|
| 42 |
}
|
| 43 |
|
| 44 |
-
# Resample if needed
|
| 45 |
if sampling_rate != 16000:
|
| 46 |
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
|
| 47 |
speech_array = resampler(speech_array)
|
| 48 |
|
| 49 |
-
# Convert to mono if stereo
|
| 50 |
if speech_array.shape[0] > 1:
|
| 51 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
| 52 |
|
| 53 |
-
# Normalize audio
|
| 54 |
speech_array = speech_array / torch.max(torch.abs(speech_array))
|
| 55 |
-
|
| 56 |
-
# Convert to numpy and squeeze
|
| 57 |
speech_array = speech_array.squeeze().numpy()
|
| 58 |
|
| 59 |
-
|
| 60 |
-
inputs = processor(
|
| 61 |
-
speech_array,
|
| 62 |
-
sampling_rate=16000,
|
| 63 |
-
return_tensors='pt',
|
| 64 |
-
padding=True
|
| 65 |
-
)
|
| 66 |
input_values = inputs.input_values.to(device)
|
| 67 |
|
| 68 |
-
# Get predictions
|
| 69 |
with torch.no_grad():
|
| 70 |
outputs = model(input_values)
|
| 71 |
logits = outputs.logits
|
| 72 |
-
|
| 73 |
-
# Get probabilities using softmax
|
| 74 |
probs = F.softmax(logits, dim=-1)[0].cpu().numpy()
|
| 75 |
|
| 76 |
-
# Get confidence scores for all emotions
|
| 77 |
confidence_scores = {
|
| 78 |
-
emotion: round(float(prob) * 100, 2)
|
| 79 |
for emotion, prob in zip(emotion_labels, probs)
|
| 80 |
}
|
| 81 |
|
| 82 |
-
# Sort confidence scores by value
|
| 83 |
sorted_scores = dict(sorted(
|
| 84 |
confidence_scores.items(),
|
| 85 |
key=lambda x: x[1],
|
|
@@ -94,14 +70,13 @@ def recognize_emotion(audio):
|
|
| 94 |
**{emotion: 0.0 for emotion in emotion_labels}
|
| 95 |
}
|
| 96 |
|
| 97 |
-
# Create Gradio interface
|
| 98 |
interface = gr.Interface(
|
| 99 |
fn=recognize_emotion,
|
| 100 |
inputs=gr.Audio(
|
| 101 |
-
sources=["microphone", "upload"],
|
| 102 |
type="filepath",
|
| 103 |
label="Upload audio or record from microphone",
|
| 104 |
-
max_length=60
|
| 105 |
),
|
| 106 |
outputs=gr.Label(
|
| 107 |
num_top_classes=len(emotion_labels),
|
|
@@ -130,13 +105,13 @@ interface = gr.Interface(
|
|
| 130 |
- Maximum audio length: 1 minute
|
| 131 |
- Best results with clear speech and minimal background noise
|
| 132 |
- Confidence scores are shown as percentages
|
| 133 |
-
"""
|
| 134 |
-
|
| 135 |
|
| 136 |
-
|
| 137 |
-
interface.launch(
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
)
|
|
|
|
| 16 |
# Define device
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
model.to(device)
|
| 19 |
+
model.eval()
|
| 20 |
|
| 21 |
def recognize_emotion(audio):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
try:
|
| 23 |
if audio is None:
|
| 24 |
return {emotion: 0.0 for emotion in emotion_labels}
|
| 25 |
|
|
|
|
| 26 |
audio_path = audio if isinstance(audio, str) else audio.name
|
|
|
|
|
|
|
| 27 |
speech_array, sampling_rate = torchaudio.load(audio_path)
|
| 28 |
|
|
|
|
| 29 |
duration = speech_array.shape[1] / sampling_rate
|
| 30 |
+
if duration > 60:
|
| 31 |
return {
|
| 32 |
"Error": "Audio too long (max 1 minute)",
|
| 33 |
**{emotion: 0.0 for emotion in emotion_labels}
|
| 34 |
}
|
| 35 |
|
|
|
|
| 36 |
if sampling_rate != 16000:
|
| 37 |
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
|
| 38 |
speech_array = resampler(speech_array)
|
| 39 |
|
|
|
|
| 40 |
if speech_array.shape[0] > 1:
|
| 41 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
| 42 |
|
|
|
|
| 43 |
speech_array = speech_array / torch.max(torch.abs(speech_array))
|
|
|
|
|
|
|
| 44 |
speech_array = speech_array.squeeze().numpy()
|
| 45 |
|
| 46 |
+
inputs = processor(speech_array, sampling_rate=16000, return_tensors='pt', padding=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
input_values = inputs.input_values.to(device)
|
| 48 |
|
|
|
|
| 49 |
with torch.no_grad():
|
| 50 |
outputs = model(input_values)
|
| 51 |
logits = outputs.logits
|
|
|
|
|
|
|
| 52 |
probs = F.softmax(logits, dim=-1)[0].cpu().numpy()
|
| 53 |
|
|
|
|
| 54 |
confidence_scores = {
|
| 55 |
+
emotion: round(float(prob) * 100, 2)
|
| 56 |
for emotion, prob in zip(emotion_labels, probs)
|
| 57 |
}
|
| 58 |
|
|
|
|
| 59 |
sorted_scores = dict(sorted(
|
| 60 |
confidence_scores.items(),
|
| 61 |
key=lambda x: x[1],
|
|
|
|
| 70 |
**{emotion: 0.0 for emotion in emotion_labels}
|
| 71 |
}
|
| 72 |
|
|
|
|
| 73 |
interface = gr.Interface(
|
| 74 |
fn=recognize_emotion,
|
| 75 |
inputs=gr.Audio(
|
| 76 |
+
sources=["microphone", "upload"],
|
| 77 |
type="filepath",
|
| 78 |
label="Upload audio or record from microphone",
|
| 79 |
+
max_length=60
|
| 80 |
),
|
| 81 |
outputs=gr.Label(
|
| 82 |
num_top_classes=len(emotion_labels),
|
|
|
|
| 105 |
- Maximum audio length: 1 minute
|
| 106 |
- Best results with clear speech and minimal background noise
|
| 107 |
- Confidence scores are shown as percentages
|
| 108 |
+
"""
|
| 109 |
+
)
|
| 110 |
|
| 111 |
+
if __name__ == "__main__":
|
| 112 |
+
interface.launch(
|
| 113 |
+
share=True,
|
| 114 |
+
debug=True,
|
| 115 |
+
server_name="0.0.0.0",
|
| 116 |
+
server_port=7860
|
| 117 |
+
)
|