Dpngtm's picture
Update app.py
d5a4fc1 verified
raw
history blame
3.82 kB
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
import torchaudio
import numpy as np
# Define emotion labels
emotion_labels = ["angry", "calm", "disgust", "fearful", "happy", "neutral", "sad", "surprised"]
# Load model and processor
model_name = "Dpngtm/wav2vec2-emotion-recognition"
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
processor = Wav2Vec2Processor.from_pretrained(model_name, num_labels=len(emotion_labels))
# Define device
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
# At the top with other global variables
emotion_icons = {
"angry": "😠",
"calm": "😌",
"disgust": "🀒",
"fearful": "😨",
"happy": "😊",
"neutral": "😐",
"sad": "😒",
"surprised": "😲"
}
def recognize_emotion(audio):
try:
if audio is None:
return {f"{emotion} {emotion_icons[emotion]}": 0 for emotion in emotion_labels}
audio_path = audio if isinstance(audio, str) else audio.name
speech_array, sampling_rate = torchaudio.load(audio_path)
duration = speech_array.shape[1] / sampling_rate
if duration > 60:
return {
"Error": "Audio too long (max 1 minute)",
**{f"{emotion} {emotion_icons[emotion]}": 0 for emotion in emotion_labels}
}
if sampling_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
speech_array = resampler(speech_array)
if speech_array.shape[0] > 1:
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
speech_array = speech_array / torch.max(torch.abs(speech_array))
speech_array = speech_array.squeeze().numpy()
inputs = processor(speech_array, sampling_rate=16000, return_tensors='pt', padding=True)
input_values = inputs.input_values.to(device)
with torch.no_grad():
outputs = model(input_values)
logits = outputs.logits
probs = F.softmax(logits, dim=-1)[0].cpu().numpy()
confidence_scores = {
f"{emotion} {emotion_icons[emotion]}": int(round(float(prob) * 100))
for emotion, prob in zip(emotion_labels, probs)
}
sorted_scores = dict(sorted(
confidence_scores.items(),
key=lambda x: x[1],
reverse=True
))
return sorted_scores
except Exception as e:
return {
"Error": str(e),
**{f"{emotion} {emotion_icons[emotion]}": 0 for emotion in emotion_labels}
}
# Create a formatted string of supported emotions
supported_emotions = " | ".join([f"{emotion_icons[emotion]} {emotion}" for emotion in emotion_labels])
interface = gr.Interface(
fn=recognize_emotion,
inputs=gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Record or Upload Audio"
),
outputs=gr.Label(
num_top_classes=len(emotion_labels),
label="Detected Emotion"
),
title="Speech Emotion Recognition",
description=f"""
### Supported Emotions:
{supported_emotions}
Maximum audio length: 1 minute""",
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="blue"
),
css="""
.gradio-container {max-width: 800px}
.label {font-size: 18px}
"""
)
if __name__ == "__main__":
interface.launch(
share=True,
debug=True,
server_name="0.0.0.0",
server_port=7860
)