Merge pull request #224 from OpenAccess-AI-Collective/system-prompt-data
Browse files- src/axolotl/datasets.py +1 -0
- src/axolotl/prompt_strategies/alpaca_chat.py +4 -2
- src/axolotl/prompt_strategies/alpaca_w_system.py +84 -0
- src/axolotl/prompt_tokenizers.py +3 -1
- src/axolotl/prompters.py +29 -37
- src/axolotl/utils/tokenization.py +2 -0
- tests/test_prompt_tokenizers.py +39 -1
- tests/test_prompters.py +68 -1
src/axolotl/datasets.py
CHANGED
|
@@ -126,6 +126,7 @@ class ConstantLengthDataset(IterableDataset):
|
|
| 126 |
buffer_len = 0
|
| 127 |
|
| 128 |
if example:
|
|
|
|
| 129 |
# just going to drop data points that are too long
|
| 130 |
if len(example["input_ids"]) <= self.seq_length:
|
| 131 |
input_ids = example["input_ids"]
|
|
|
|
| 126 |
buffer_len = 0
|
| 127 |
|
| 128 |
if example:
|
| 129 |
+
# FIXME
|
| 130 |
# just going to drop data points that are too long
|
| 131 |
if len(example["input_ids"]) <= self.seq_length:
|
| 132 |
input_ids = example["input_ids"]
|
src/axolotl/prompt_strategies/alpaca_chat.py
CHANGED
|
@@ -45,8 +45,10 @@ class NoSystemPrompter(AlpacaPrompter):
|
|
| 45 |
Null Prompter with no system prompts
|
| 46 |
"""
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
|
| 51 |
def __init__(self): # pylint: disable=super-init-not-called
|
| 52 |
pass
|
|
|
|
| 45 |
Null Prompter with no system prompts
|
| 46 |
"""
|
| 47 |
|
| 48 |
+
system_prompt = ""
|
| 49 |
+
system_no_input_prompt = ""
|
| 50 |
+
turn_format = "{instruction} {input} "
|
| 51 |
+
turn_no_input_format = "{instruction} "
|
| 52 |
|
| 53 |
def __init__(self): # pylint: disable=super-init-not-called
|
| 54 |
pass
|
src/axolotl/prompt_strategies/alpaca_w_system.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Prompt strategies loader for alpaca instruction datasets with system prompts
|
| 3 |
+
"""
|
| 4 |
+
from typing import Generator, Tuple, Union
|
| 5 |
+
|
| 6 |
+
from axolotl.prompt_tokenizers import PromptTokenizingStrategy
|
| 7 |
+
from axolotl.prompters import AlpacaPrompter, PromptStyle
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class InstructionWSystemPromptTokenizingStrategy(PromptTokenizingStrategy):
|
| 11 |
+
"""
|
| 12 |
+
Tokenizing strategy for instruction-based prompts.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str]:
|
| 16 |
+
return (
|
| 17 |
+
prompt["instruction"],
|
| 18 |
+
prompt["input"] if "input" in prompt else "",
|
| 19 |
+
prompt["output"],
|
| 20 |
+
prompt["system"],
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
def tokenize_prompt(self, prompt):
|
| 24 |
+
# pylint: disable=duplicate-code
|
| 25 |
+
(
|
| 26 |
+
instruction,
|
| 27 |
+
input, # pylint: disable=redefined-builtin
|
| 28 |
+
response,
|
| 29 |
+
system,
|
| 30 |
+
) = self.parse_instruction_fields(prompt)
|
| 31 |
+
user_prompt = next(
|
| 32 |
+
iter(
|
| 33 |
+
self.prompter.build_prompt_w_system(
|
| 34 |
+
system,
|
| 35 |
+
instruction,
|
| 36 |
+
input,
|
| 37 |
+
)
|
| 38 |
+
)
|
| 39 |
+
)
|
| 40 |
+
tokenized_prompt = self._tokenize(user_prompt, add_eos_token=False)
|
| 41 |
+
if not self.train_on_inputs:
|
| 42 |
+
user_prompt_len = len(tokenized_prompt["input_ids"])
|
| 43 |
+
# TODO this could be sped up using numpy array slicing
|
| 44 |
+
tokenized_prompt["labels"] = [-100] * user_prompt_len
|
| 45 |
+
tokenized_res_prompt = self._tokenize(
|
| 46 |
+
response, strip_bos_token=True, add_eos_token=True
|
| 47 |
+
)
|
| 48 |
+
tokenized_prompt["input_ids"] += tokenized_res_prompt["input_ids"]
|
| 49 |
+
tokenized_prompt["attention_mask"] += tokenized_res_prompt["attention_mask"]
|
| 50 |
+
tokenized_prompt["labels"] += tokenized_res_prompt["input_ids"]
|
| 51 |
+
|
| 52 |
+
return tokenized_prompt
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class SystemDataPrompter(AlpacaPrompter):
|
| 56 |
+
"""
|
| 57 |
+
Alpaca Style Prompter that uses system prompts from the dataset
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
def build_prompt_w_system(
|
| 61 |
+
self,
|
| 62 |
+
system: str,
|
| 63 |
+
instruction: str,
|
| 64 |
+
input: Union[None, str] = None, # pylint: disable=redefined-builtin
|
| 65 |
+
output: Union[None, str] = None,
|
| 66 |
+
) -> Generator[str, None, None]:
|
| 67 |
+
# returns the full prompt from instruction and optional input
|
| 68 |
+
# if a label (=response, =output) is provided, it's also appended.
|
| 69 |
+
if input:
|
| 70 |
+
res = system + self.turn_format.format(instruction=instruction, input=input)
|
| 71 |
+
else:
|
| 72 |
+
res = system + self.turn_no_input_format.format(instruction=instruction)
|
| 73 |
+
if output:
|
| 74 |
+
res = f"{res}{output}"
|
| 75 |
+
yield res
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def load(tokenizer, cfg):
|
| 79 |
+
return InstructionWSystemPromptTokenizingStrategy(
|
| 80 |
+
SystemDataPrompter(PromptStyle.CHAT.value),
|
| 81 |
+
tokenizer,
|
| 82 |
+
cfg.train_on_inputs,
|
| 83 |
+
cfg.sequence_len,
|
| 84 |
+
)
|
src/axolotl/prompt_tokenizers.py
CHANGED
|
@@ -87,7 +87,9 @@ class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
| 87 |
Tokenizing strategy for instruction-based prompts.
|
| 88 |
"""
|
| 89 |
|
| 90 |
-
def parse_instruction_fields(
|
|
|
|
|
|
|
| 91 |
raise NotImplementedError
|
| 92 |
|
| 93 |
def tokenize_prompt(self, prompt):
|
|
|
|
| 87 |
Tokenizing strategy for instruction-based prompts.
|
| 88 |
"""
|
| 89 |
|
| 90 |
+
def parse_instruction_fields(
|
| 91 |
+
self, prompt
|
| 92 |
+
) -> Union[Tuple[str, str, str], Tuple[str, str, str, str]]:
|
| 93 |
raise NotImplementedError
|
| 94 |
|
| 95 |
def tokenize_prompt(self, prompt):
|
src/axolotl/prompters.py
CHANGED
|
@@ -24,6 +24,8 @@ class AlpacaPrompter:
|
|
| 24 |
|
| 25 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
| 26 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
|
|
|
|
|
|
| 27 |
prompt_style: Optional[PromptStyle] = None
|
| 28 |
|
| 29 |
def __init__(self, prompt_style=PromptStyle.INSTRUCT.value):
|
|
@@ -32,23 +34,13 @@ class AlpacaPrompter:
|
|
| 32 |
|
| 33 |
def match_prompt_style(self):
|
| 34 |
if self.prompt_style == PromptStyle.INSTRUCT.value:
|
| 35 |
-
self.
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
)
|
| 39 |
-
self.prompt_no_input = (
|
| 40 |
-
self.system_no_input_prompt
|
| 41 |
-
+ "### Instruction:\n{instruction}\n\n### Response:\n"
|
| 42 |
)
|
| 43 |
-
self.response_split = "### Response:"
|
| 44 |
if self.prompt_style == PromptStyle.CHAT.value:
|
| 45 |
-
self.
|
| 46 |
-
|
| 47 |
-
)
|
| 48 |
-
self.prompt_no_input = (
|
| 49 |
-
self.system_no_input_prompt + "USER: {instruction}\nASSISTANT:"
|
| 50 |
-
)
|
| 51 |
-
self.response_split = "ASSISTANT:"
|
| 52 |
|
| 53 |
def build_prompt(
|
| 54 |
self,
|
|
@@ -59,16 +51,17 @@ class AlpacaPrompter:
|
|
| 59 |
# returns the full prompt from instruction and optional input
|
| 60 |
# if a label (=response, =output) is provided, it's also appended.
|
| 61 |
if input:
|
| 62 |
-
res = self.
|
|
|
|
|
|
|
| 63 |
else:
|
| 64 |
-
res = self.
|
|
|
|
|
|
|
| 65 |
if output:
|
| 66 |
res = f"{res}{output}"
|
| 67 |
yield res
|
| 68 |
|
| 69 |
-
def get_response(self, output: str) -> str:
|
| 70 |
-
return output.split(self.response_split)[1].strip()
|
| 71 |
-
|
| 72 |
|
| 73 |
class UnpromptedPrompter(AlpacaPrompter):
|
| 74 |
"""
|
|
@@ -93,7 +86,10 @@ class MultipleChoiceExplainPrompter(AlpacaPrompter):
|
|
| 93 |
"""
|
| 94 |
|
| 95 |
system_prompt = (
|
| 96 |
-
"Choose the answer that best answers the question. Explain your reasoning
|
|
|
|
|
|
|
|
|
|
| 97 |
)
|
| 98 |
|
| 99 |
|
|
@@ -102,7 +98,12 @@ class MultipleChoiceConcisePrompter(AlpacaPrompter):
|
|
| 102 |
Prompter for multiple choice concise
|
| 103 |
"""
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
class SummarizeTLDRPrompter(AlpacaPrompter):
|
|
@@ -110,9 +111,12 @@ class SummarizeTLDRPrompter(AlpacaPrompter):
|
|
| 110 |
Prompter for summarize TLDR
|
| 111 |
"""
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
|
| 118 |
class CompletionPrompter:
|
|
@@ -128,9 +132,6 @@ class CompletionPrompter:
|
|
| 128 |
) -> Generator[str, None, None]:
|
| 129 |
yield instruction
|
| 130 |
|
| 131 |
-
def get_response(self, output: str) -> str:
|
| 132 |
-
return output.strip()
|
| 133 |
-
|
| 134 |
|
| 135 |
class GPTeacherPrompter(AlpacaPrompter):
|
| 136 |
"""
|
|
@@ -210,9 +211,6 @@ class ReflectAlpacaPrompter:
|
|
| 210 |
res = f"{res}{label}"
|
| 211 |
yield res
|
| 212 |
|
| 213 |
-
def get_response(self, output: str) -> str:
|
| 214 |
-
return output.split(self.response_split)[1].strip()
|
| 215 |
-
|
| 216 |
|
| 217 |
class SeparatorStyle(Enum):
|
| 218 |
"""Different separator style."""
|
|
@@ -289,12 +287,6 @@ class ShareGPTPrompter: # pylint: disable=too-few-public-methods
|
|
| 289 |
sep2=" ",
|
| 290 |
)
|
| 291 |
|
| 292 |
-
# def match_prompt_style(self):
|
| 293 |
-
# if self.prompt_style == PromptStyle.chat.value:
|
| 294 |
-
# self.prompt_input = self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:"
|
| 295 |
-
# self.prompt_no_input = self.system_no_input_prompt + "USER: {instruction}\nASSISTANT:"
|
| 296 |
-
# self.response_split = "ASSISTANT:"
|
| 297 |
-
|
| 298 |
def build_prompt(self, source) -> Generator[str, None, None]:
|
| 299 |
# ignore the system prompt if provided
|
| 300 |
if source[0]["from"] == "system":
|
|
|
|
| 24 |
|
| 25 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
| 26 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
| 27 |
+
turn_format: str
|
| 28 |
+
turn_no_input_format: str
|
| 29 |
prompt_style: Optional[PromptStyle] = None
|
| 30 |
|
| 31 |
def __init__(self, prompt_style=PromptStyle.INSTRUCT.value):
|
|
|
|
| 34 |
|
| 35 |
def match_prompt_style(self):
|
| 36 |
if self.prompt_style == PromptStyle.INSTRUCT.value:
|
| 37 |
+
self.turn_format = "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
| 38 |
+
self.turn_no_input_format = (
|
| 39 |
+
"### Instruction:\n{instruction}\n\n### Response:\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
|
|
|
| 41 |
if self.prompt_style == PromptStyle.CHAT.value:
|
| 42 |
+
self.turn_format = "USER: {instruction}\n{input}\nASSISTANT:"
|
| 43 |
+
self.turn_no_input_format = "USER: {instruction}\nASSISTANT:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def build_prompt(
|
| 46 |
self,
|
|
|
|
| 51 |
# returns the full prompt from instruction and optional input
|
| 52 |
# if a label (=response, =output) is provided, it's also appended.
|
| 53 |
if input:
|
| 54 |
+
res = self.system_prompt + self.turn_format.format(
|
| 55 |
+
instruction=instruction, input=input
|
| 56 |
+
)
|
| 57 |
else:
|
| 58 |
+
res = self.system_no_input_prompt + self.turn_no_input_format.format(
|
| 59 |
+
instruction=instruction
|
| 60 |
+
)
|
| 61 |
if output:
|
| 62 |
res = f"{res}{output}"
|
| 63 |
yield res
|
| 64 |
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
class UnpromptedPrompter(AlpacaPrompter):
|
| 67 |
"""
|
|
|
|
| 86 |
"""
|
| 87 |
|
| 88 |
system_prompt = (
|
| 89 |
+
"Choose the answer that best answers the question. Explain your reasoning.\n"
|
| 90 |
+
)
|
| 91 |
+
system_no_input_prompt = (
|
| 92 |
+
"Choose the answer that best answers the question. Explain your reasoning.\n"
|
| 93 |
)
|
| 94 |
|
| 95 |
|
|
|
|
| 98 |
Prompter for multiple choice concise
|
| 99 |
"""
|
| 100 |
|
| 101 |
+
system_prompt = "Choose the answer that best answers the question. Be concise in your response.\n\n"
|
| 102 |
+
system_no_input_prompt = "Choose the answer that best answers the question. Be concise in your response.\n\n"
|
| 103 |
+
|
| 104 |
+
def match_prompt_style(self):
|
| 105 |
+
self.turn_format = "USER: {instruction}\n{input}\nASSISTANT:"
|
| 106 |
+
self.turn_no_input_format = "USER: {instruction}\nASSISTANT:"
|
| 107 |
|
| 108 |
|
| 109 |
class SummarizeTLDRPrompter(AlpacaPrompter):
|
|
|
|
| 111 |
Prompter for summarize TLDR
|
| 112 |
"""
|
| 113 |
|
| 114 |
+
system_prompt = ""
|
| 115 |
+
system_no_input_prompt = ""
|
| 116 |
+
|
| 117 |
+
def match_prompt_style(self):
|
| 118 |
+
self.turn_format = "USER: Summarize the following article as a TL;DR.\n{instruction}\n{input}\nASSISTANT:"
|
| 119 |
+
self.turn_no_input_format = "USER: Summarize the following article as a TL;DR.\n{instruction}\nASSISTANT:"
|
| 120 |
|
| 121 |
|
| 122 |
class CompletionPrompter:
|
|
|
|
| 132 |
) -> Generator[str, None, None]:
|
| 133 |
yield instruction
|
| 134 |
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
class GPTeacherPrompter(AlpacaPrompter):
|
| 137 |
"""
|
|
|
|
| 211 |
res = f"{res}{label}"
|
| 212 |
yield res
|
| 213 |
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
class SeparatorStyle(Enum):
|
| 216 |
"""Different separator style."""
|
|
|
|
| 287 |
sep2=" ",
|
| 288 |
)
|
| 289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
def build_prompt(self, source) -> Generator[str, None, None]:
|
| 291 |
# ignore the system prompt if provided
|
| 292 |
if source[0]["from"] == "system":
|
src/axolotl/utils/tokenization.py
CHANGED
|
@@ -34,3 +34,5 @@ def check_example_labels(example, tokenizer):
|
|
| 34 |
|
| 35 |
logging.info(" ".join(colored_tokens))
|
| 36 |
logging.info("\n\n\n")
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
logging.info(" ".join(colored_tokens))
|
| 36 |
logging.info("\n\n\n")
|
| 37 |
+
|
| 38 |
+
return " ".join(colored_tokens)
|
tests/test_prompt_tokenizers.py
CHANGED
|
@@ -7,11 +7,15 @@ from pathlib import Path
|
|
| 7 |
from transformers import AutoTokenizer
|
| 8 |
|
| 9 |
from axolotl.prompt_strategies.alpaca_chat import NoSystemPrompter
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from axolotl.prompt_tokenizers import (
|
| 11 |
AlpacaPromptTokenizingStrategy,
|
| 12 |
ShareGPTPromptTokenizingStrategy,
|
| 13 |
)
|
| 14 |
-
from axolotl.prompters import AlpacaPrompter, ShareGPTPrompter
|
| 15 |
|
| 16 |
logging.basicConfig(level="INFO")
|
| 17 |
|
|
@@ -96,5 +100,39 @@ class TestPromptTokenizationStrategies(unittest.TestCase):
|
|
| 96 |
assert example["labels"][world_idx - 1] == -100
|
| 97 |
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
if __name__ == "__main__":
|
| 100 |
unittest.main()
|
|
|
|
| 7 |
from transformers import AutoTokenizer
|
| 8 |
|
| 9 |
from axolotl.prompt_strategies.alpaca_chat import NoSystemPrompter
|
| 10 |
+
from axolotl.prompt_strategies.alpaca_w_system import (
|
| 11 |
+
InstructionWSystemPromptTokenizingStrategy,
|
| 12 |
+
SystemDataPrompter,
|
| 13 |
+
)
|
| 14 |
from axolotl.prompt_tokenizers import (
|
| 15 |
AlpacaPromptTokenizingStrategy,
|
| 16 |
ShareGPTPromptTokenizingStrategy,
|
| 17 |
)
|
| 18 |
+
from axolotl.prompters import AlpacaPrompter, PromptStyle, ShareGPTPrompter
|
| 19 |
|
| 20 |
logging.basicConfig(level="INFO")
|
| 21 |
|
|
|
|
| 100 |
assert example["labels"][world_idx - 1] == -100
|
| 101 |
|
| 102 |
|
| 103 |
+
class InstructionWSystemPromptTokenizingStrategyTest(unittest.TestCase):
|
| 104 |
+
"""
|
| 105 |
+
Test class for prompt tokenization strategies with sys prompt from the dataset
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
def setUp(self) -> None:
|
| 109 |
+
# pylint: disable=duplicate-code
|
| 110 |
+
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
|
| 111 |
+
self.tokenizer.add_special_tokens(
|
| 112 |
+
{
|
| 113 |
+
"bos_token": "<s>",
|
| 114 |
+
"eos_token": "</s>",
|
| 115 |
+
"unk_token": "<unk>",
|
| 116 |
+
}
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def test_system_alpaca(self):
|
| 120 |
+
prompter = SystemDataPrompter(PromptStyle.CHAT.value)
|
| 121 |
+
strat = InstructionWSystemPromptTokenizingStrategy(
|
| 122 |
+
prompter,
|
| 123 |
+
self.tokenizer,
|
| 124 |
+
False,
|
| 125 |
+
2048,
|
| 126 |
+
)
|
| 127 |
+
sample = {
|
| 128 |
+
"system": "use cot",
|
| 129 |
+
"instruction": "hello!",
|
| 130 |
+
"output": "Hi! How can I help?",
|
| 131 |
+
}
|
| 132 |
+
example = strat.tokenize_prompt(sample)
|
| 133 |
+
assert example["input_ids"][0:3] == [1, 671, 20118] # <s>use cot
|
| 134 |
+
assert example["input_ids"][3] == 11889 # USER
|
| 135 |
+
|
| 136 |
+
|
| 137 |
if __name__ == "__main__":
|
| 138 |
unittest.main()
|
tests/test_prompters.py
CHANGED
|
@@ -2,7 +2,13 @@
|
|
| 2 |
|
| 3 |
import unittest
|
| 4 |
|
| 5 |
-
from axolotl.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class AlpacaPrompterTest(unittest.TestCase):
|
|
@@ -55,3 +61,64 @@ class AlpacaPrompterTest(unittest.TestCase):
|
|
| 55 |
assert "### Response:" not in res
|
| 56 |
assert "USER:" in res
|
| 57 |
assert "ASSISTANT:" in res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import unittest
|
| 4 |
|
| 5 |
+
from axolotl.prompt_strategies.alpaca_w_system import SystemDataPrompter
|
| 6 |
+
from axolotl.prompters import (
|
| 7 |
+
AlpacaPrompter,
|
| 8 |
+
MultipleChoiceExplainPrompter,
|
| 9 |
+
PromptStyle,
|
| 10 |
+
UnpromptedPrompter,
|
| 11 |
+
)
|
| 12 |
|
| 13 |
|
| 14 |
class AlpacaPrompterTest(unittest.TestCase):
|
|
|
|
| 61 |
assert "### Response:" not in res
|
| 62 |
assert "USER:" in res
|
| 63 |
assert "ASSISTANT:" in res
|
| 64 |
+
|
| 65 |
+
def test_system_prompt(self):
|
| 66 |
+
prompter = SystemDataPrompter(prompt_style=PromptStyle.CHAT.value)
|
| 67 |
+
res = next(
|
| 68 |
+
prompter.build_prompt_w_system(
|
| 69 |
+
"use cot", "tell me a joke about the following", "alpacas"
|
| 70 |
+
)
|
| 71 |
+
)
|
| 72 |
+
assert "use cot" in res
|
| 73 |
+
assert res.startswith("use cot")
|
| 74 |
+
assert "### Instruction:" not in res
|
| 75 |
+
assert "### Input:" not in res
|
| 76 |
+
assert "alpacas" in res
|
| 77 |
+
assert "### Response:" not in res
|
| 78 |
+
assert "USER:" in res
|
| 79 |
+
assert "ASSISTANT:" in res
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class UnpromptedPrompterTest(unittest.TestCase):
|
| 83 |
+
"""
|
| 84 |
+
Test class for UnpromptedPrompter with no system prompts
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def test_prompt_style_w_none(self):
|
| 88 |
+
prompter = UnpromptedPrompter(prompt_style=None)
|
| 89 |
+
res = next(prompter.build_prompt("tell me a joke"))
|
| 90 |
+
assert "### Instruction:" in res
|
| 91 |
+
assert "tell me a joke" in res
|
| 92 |
+
assert res.startswith("###")
|
| 93 |
+
|
| 94 |
+
def test_prompt_style_w_instruct(self):
|
| 95 |
+
prompter = UnpromptedPrompter(prompt_style=PromptStyle.INSTRUCT.value)
|
| 96 |
+
res = next(
|
| 97 |
+
prompter.build_prompt("tell me a joke about the following", "alpacas")
|
| 98 |
+
)
|
| 99 |
+
assert "### Instruction:" in res
|
| 100 |
+
assert "tell me a joke" in res
|
| 101 |
+
assert res.startswith("###")
|
| 102 |
+
|
| 103 |
+
def test_prompt_style_w_chat(self):
|
| 104 |
+
prompter = UnpromptedPrompter(prompt_style=PromptStyle.CHAT.value)
|
| 105 |
+
res = next(
|
| 106 |
+
prompter.build_prompt("tell me a joke about the following", "alpacas")
|
| 107 |
+
)
|
| 108 |
+
assert "USER:" in res
|
| 109 |
+
assert "tell me a joke" in res
|
| 110 |
+
assert res.startswith("USER:")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class MultipleChoiceExplainPrompterTest(unittest.TestCase):
|
| 114 |
+
"""
|
| 115 |
+
Test class for MultipleChoiceExplainPrompter
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
def test_prompt_style_w_chat(self):
|
| 119 |
+
prompter = MultipleChoiceExplainPrompter(prompt_style=PromptStyle.CHAT.value)
|
| 120 |
+
res = next(prompter.build_prompt("choose one", "- A\n- B\n- C", "C"))
|
| 121 |
+
assert "USER:" in res
|
| 122 |
+
assert "choose one" in res
|
| 123 |
+
assert "Choose the answer that best answers the question." in res
|
| 124 |
+
assert "- A\n- B\n- C" in res
|