DPO cleanup (#1126)
Browse files* cleanup dpo to be a little more extensible, add zephyr/nectar strategy
* fix eos slash
* support for eval split
* fix kwargs
* handle empty evals
* don't load peft model for dpo
* ensure dpo traning args gets bf16 for peft if applicable
* fix duplicate kwargs for bf16
* make sure to respect the configured lr scheduler
* supprt trainer callback to push config to wandb
* set dataloader preload args
* ensure that we are loading the lora when merging
* Update src/axolotl/utils/data.py
Co-authored-by: Agus <[email protected]>
* support local datasets for dpo
Co-authored-by: Agus <[email protected]>
* chore: lint
* dpo/kto/ipo smoke tests w lora, simplify dpo dataset type names
* add split to dpo tests
* fix rebase/merging error
* handle edge case w logging
* use accelerator for dpo datasets so it doesn't break the logger
* missing args
* validate checkpoint is an adapter for now
* log warning when dataset strategy is not loadable
---------
Co-authored-by: Agus <[email protected]>
- src/axolotl/cli/__init__.py +2 -77
- src/axolotl/core/trainer_builder.py +86 -23
- src/axolotl/prompt_strategies/dpo/__init__.py +21 -0
- src/axolotl/prompt_strategies/dpo/chatml.py +85 -0
- src/axolotl/prompt_strategies/dpo/zephyr.py +21 -0
- src/axolotl/train.py +6 -1
- src/axolotl/utils/data.py +49 -1
- src/axolotl/utils/models.py +11 -3
- src/axolotl/utils/trainer.py +2 -1
- tests/e2e/test_dpo.py +157 -0
|
@@ -17,7 +17,6 @@ import yaml
|
|
| 17 |
# add src to the pythonpath so we don't need to pip install this
|
| 18 |
from accelerate.commands.config import config_args
|
| 19 |
from art import text2art
|
| 20 |
-
from datasets import concatenate_datasets, load_dataset
|
| 21 |
from huggingface_hub import HfApi
|
| 22 |
from huggingface_hub.utils import LocalTokenNotFoundError
|
| 23 |
from transformers import GenerationConfig, TextIteratorStreamer, TextStreamer
|
|
@@ -30,7 +29,7 @@ from axolotl.utils.config import (
|
|
| 30 |
normalize_config,
|
| 31 |
validate_config,
|
| 32 |
)
|
| 33 |
-
from axolotl.utils.data import prepare_dataset
|
| 34 |
from axolotl.utils.dict import DictDefault
|
| 35 |
from axolotl.utils.distributed import is_main_process
|
| 36 |
from axolotl.utils.mlflow_ import setup_mlflow_env_vars
|
|
@@ -343,81 +342,7 @@ def load_rl_datasets(
|
|
| 343 |
cfg: DictDefault,
|
| 344 |
cli_args: TrainerCliArgs, # pylint: disable=unused-argument
|
| 345 |
) -> TrainDatasetMeta:
|
| 346 |
-
|
| 347 |
-
for i, ds_cfg in enumerate(cfg.datasets):
|
| 348 |
-
train_datasets.insert(i, load_dataset(ds_cfg["path"], split=ds_cfg["split"]))
|
| 349 |
-
# eval_dataset = load_dataset(
|
| 350 |
-
# cfg.test_datasets[0]["path"], split=cfg.test_datasets[0]["split"]
|
| 351 |
-
# )
|
| 352 |
-
eval_dataset = None
|
| 353 |
-
|
| 354 |
-
def argilla_apply_chatml(sample): # pylint: disable=possibly-unused-variable
|
| 355 |
-
if "system" in sample and sample["system"]:
|
| 356 |
-
sample["prompt"] = (
|
| 357 |
-
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
|
| 358 |
-
f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n"
|
| 359 |
-
)
|
| 360 |
-
else:
|
| 361 |
-
sample[
|
| 362 |
-
"prompt"
|
| 363 |
-
] = f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n"
|
| 364 |
-
sample["chosen"] = f"{sample['chosen_response']}<|im_end|>"
|
| 365 |
-
sample["rejected"] = f"{sample['rejected_response']}<|im_end|>"
|
| 366 |
-
return sample
|
| 367 |
-
|
| 368 |
-
def intel_apply_chatml(sample): # pylint: disable=possibly-unused-variable
|
| 369 |
-
if "system" in sample and sample["system"]:
|
| 370 |
-
sample["prompt"] = (
|
| 371 |
-
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
|
| 372 |
-
f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n"
|
| 373 |
-
)
|
| 374 |
-
else:
|
| 375 |
-
sample[
|
| 376 |
-
"prompt"
|
| 377 |
-
] = f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n"
|
| 378 |
-
sample["chosen"] = f"{sample['chosen']}<|im_end|>"
|
| 379 |
-
sample["rejected"] = f"{sample['rejected']}<|im_end|>"
|
| 380 |
-
return sample
|
| 381 |
-
|
| 382 |
-
def apply_chatml(sample): # pylint: disable=possibly-unused-variable
|
| 383 |
-
if "system" in sample and sample["system"]:
|
| 384 |
-
sample["prompt"] = (
|
| 385 |
-
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
|
| 386 |
-
f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
|
| 387 |
-
)
|
| 388 |
-
else:
|
| 389 |
-
sample[
|
| 390 |
-
"prompt"
|
| 391 |
-
] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
|
| 392 |
-
sample["chosen"] = f"{sample['chosen']}<|im_end|>"
|
| 393 |
-
sample["rejected"] = f"{sample['rejected']}<|im_end|>"
|
| 394 |
-
return sample
|
| 395 |
-
|
| 396 |
-
def ultra_apply_chatml(sample): # pylint: disable=possibly-unused-variable
|
| 397 |
-
if "system" in sample and sample["system"]:
|
| 398 |
-
sample["prompt"] = (
|
| 399 |
-
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
|
| 400 |
-
f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
|
| 401 |
-
)
|
| 402 |
-
else:
|
| 403 |
-
sample[
|
| 404 |
-
"prompt"
|
| 405 |
-
] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
|
| 406 |
-
sample["chosen"] = f"{sample['chosen'][1]['content']}<|im_end|>"
|
| 407 |
-
sample["rejected"] = f"{sample['rejected'][1]['content']}<|im_end|>"
|
| 408 |
-
return sample
|
| 409 |
-
|
| 410 |
-
for i, data_set in enumerate(train_datasets):
|
| 411 |
-
_type = cfg.datasets[i]["type"]
|
| 412 |
-
ds_type_fn = locals()[_type]
|
| 413 |
-
train_datasets[i] = data_set.map(
|
| 414 |
-
ds_type_fn,
|
| 415 |
-
desc="Mapping RL Dataset",
|
| 416 |
-
)
|
| 417 |
-
train_dataset = concatenate_datasets(train_datasets)
|
| 418 |
-
|
| 419 |
-
# eval_dataset = eval_dataset.map(intel_apply_chatml)
|
| 420 |
-
|
| 421 |
total_num_steps = int(
|
| 422 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
| 423 |
)
|
|
|
|
| 17 |
# add src to the pythonpath so we don't need to pip install this
|
| 18 |
from accelerate.commands.config import config_args
|
| 19 |
from art import text2art
|
|
|
|
| 20 |
from huggingface_hub import HfApi
|
| 21 |
from huggingface_hub.utils import LocalTokenNotFoundError
|
| 22 |
from transformers import GenerationConfig, TextIteratorStreamer, TextStreamer
|
|
|
|
| 29 |
normalize_config,
|
| 30 |
validate_config,
|
| 31 |
)
|
| 32 |
+
from axolotl.utils.data import load_prepare_dpo_datasets, prepare_dataset
|
| 33 |
from axolotl.utils.dict import DictDefault
|
| 34 |
from axolotl.utils.distributed import is_main_process
|
| 35 |
from axolotl.utils.mlflow_ import setup_mlflow_env_vars
|
|
|
|
| 342 |
cfg: DictDefault,
|
| 343 |
cli_args: TrainerCliArgs, # pylint: disable=unused-argument
|
| 344 |
) -> TrainDatasetMeta:
|
| 345 |
+
train_dataset, eval_dataset = load_prepare_dpo_datasets(cfg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
total_num_steps = int(
|
| 347 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
| 348 |
)
|
|
@@ -12,14 +12,19 @@ from abc import abstractmethod
|
|
| 12 |
from dataclasses import dataclass, field
|
| 13 |
from functools import wraps
|
| 14 |
from pathlib import Path
|
| 15 |
-
from typing import Optional, Type, Union
|
| 16 |
|
| 17 |
import torch
|
| 18 |
import transformers
|
| 19 |
from datasets import Dataset
|
| 20 |
from torch.optim.lr_scheduler import OneCycleLR
|
| 21 |
from torch.utils.data import BatchSampler, DataLoader, RandomSampler, SequentialSampler
|
| 22 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
from transformers.trainer_utils import seed_worker
|
| 24 |
from trl import DPOTrainer
|
| 25 |
|
|
@@ -460,6 +465,7 @@ class TrainerBuilderBase(abc.ABC):
|
|
| 460 |
_train_dataset = None
|
| 461 |
_eval_dataset = None
|
| 462 |
_model_ref = None
|
|
|
|
| 463 |
|
| 464 |
def __init__(self, cfg, model, tokenizer):
|
| 465 |
self.cfg = cfg
|
|
@@ -490,13 +496,26 @@ class TrainerBuilderBase(abc.ABC):
|
|
| 490 |
def eval_dataset(self, dataset):
|
| 491 |
self._eval_dataset = dataset
|
| 492 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
@abstractmethod
|
| 494 |
def build(self, total_num_steps):
|
| 495 |
pass
|
| 496 |
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
|
| 501 |
@abstractmethod
|
| 502 |
def get_post_trainer_create_callbacks(self, trainer):
|
|
@@ -504,12 +523,6 @@ class TrainerBuilderBase(abc.ABC):
|
|
| 504 |
Callbacks added after the trainer is created, usually b/c these need access to the trainer
|
| 505 |
"""
|
| 506 |
|
| 507 |
-
|
| 508 |
-
class HFCausalTrainerBuilder(TrainerBuilderBase):
|
| 509 |
-
"""
|
| 510 |
-
Build the HuggingFace training args/trainer for Causal models
|
| 511 |
-
"""
|
| 512 |
-
|
| 513 |
def hook_pre_create_training_args(self, training_arguments_kwargs):
|
| 514 |
# TODO
|
| 515 |
return training_arguments_kwargs
|
|
@@ -526,10 +539,16 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
| 526 |
# TODO
|
| 527 |
return trainer
|
| 528 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
def get_callbacks(self):
|
| 530 |
-
callbacks =
|
| 531 |
callbacks.append(GPUStatsCallback(self.cfg))
|
| 532 |
-
callbacks.append(EvalFirstStepCallback)
|
| 533 |
|
| 534 |
if self.cfg.relora_steps:
|
| 535 |
callbacks.append(ReLoRACallback(self.cfg))
|
|
@@ -538,7 +557,7 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
| 538 |
hasattr(self.model, "use_bettertransformer")
|
| 539 |
and self.model.use_bettertransformer is True
|
| 540 |
):
|
| 541 |
-
callbacks.append(SaveBetterTransformerModelCallback)
|
| 542 |
|
| 543 |
if self.cfg.use_wandb:
|
| 544 |
callbacks.append(
|
|
@@ -931,7 +950,7 @@ class HFDPOTrainerBuilder(TrainerBuilderBase):
|
|
| 931 |
"""
|
| 932 |
|
| 933 |
def get_callbacks(self):
|
| 934 |
-
callbacks =
|
| 935 |
return callbacks
|
| 936 |
|
| 937 |
def get_post_trainer_create_callbacks(self, trainer):
|
|
@@ -949,21 +968,60 @@ class HFDPOTrainerBuilder(TrainerBuilderBase):
|
|
| 949 |
]:
|
| 950 |
if hasattr(self.cfg, arg) and getattr(self.cfg, arg) is not None:
|
| 951 |
training_args_kwargs[arg] = getattr(self.cfg, arg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 952 |
training_args = TrainingArguments(
|
| 953 |
per_device_train_batch_size=self.cfg.micro_batch_size,
|
| 954 |
-
max_steps=total_num_steps,
|
| 955 |
remove_unused_columns=False,
|
| 956 |
gradient_accumulation_steps=self.cfg.gradient_accumulation_steps,
|
| 957 |
learning_rate=self.cfg.learning_rate,
|
| 958 |
-
evaluation_strategy="no",
|
| 959 |
-
# eval_steps=self.cfg.eval_steps,
|
| 960 |
save_strategy="steps",
|
| 961 |
save_steps=self.cfg.save_steps,
|
| 962 |
output_dir=self.cfg.output_dir,
|
| 963 |
warmup_steps=self.cfg.warmup_steps,
|
| 964 |
-
bf16=True,
|
| 965 |
gradient_checkpointing=self.cfg.gradient_checkpointing,
|
| 966 |
-
gradient_checkpointing_kwargs=
|
|
|
|
| 967 |
logging_first_step=True,
|
| 968 |
logging_steps=1,
|
| 969 |
optim=self.cfg.optimizer,
|
|
@@ -982,22 +1040,27 @@ class HFDPOTrainerBuilder(TrainerBuilderBase):
|
|
| 982 |
dpo_trainer_kwargs["label_smoothing"] = self.cfg.dpo_label_smoothing
|
| 983 |
elif self.cfg.rl == "kto_pair":
|
| 984 |
dpo_trainer_kwargs["loss_type"] = "kto_pair"
|
| 985 |
-
|
|
|
|
|
|
|
|
|
|
| 986 |
dpo_trainer = DPOTrainer(
|
| 987 |
self.model,
|
| 988 |
self.model_ref,
|
| 989 |
args=training_args,
|
| 990 |
beta=self.cfg.dpo_beta or 0.1,
|
| 991 |
train_dataset=self.train_dataset,
|
| 992 |
-
# eval_dataset=self.eval_dataset,
|
| 993 |
-
eval_dataset=None,
|
| 994 |
tokenizer=self.tokenizer,
|
| 995 |
max_length=self.cfg.sequence_len,
|
| 996 |
max_target_length=None,
|
| 997 |
max_prompt_length=self.cfg.sequence_len,
|
| 998 |
generate_during_eval=True,
|
|
|
|
| 999 |
**dpo_trainer_kwargs,
|
| 1000 |
)
|
|
|
|
|
|
|
|
|
|
| 1001 |
|
| 1002 |
return dpo_trainer
|
| 1003 |
|
|
|
|
| 12 |
from dataclasses import dataclass, field
|
| 13 |
from functools import wraps
|
| 14 |
from pathlib import Path
|
| 15 |
+
from typing import List, Optional, Type, Union
|
| 16 |
|
| 17 |
import torch
|
| 18 |
import transformers
|
| 19 |
from datasets import Dataset
|
| 20 |
from torch.optim.lr_scheduler import OneCycleLR
|
| 21 |
from torch.utils.data import BatchSampler, DataLoader, RandomSampler, SequentialSampler
|
| 22 |
+
from transformers import (
|
| 23 |
+
EarlyStoppingCallback,
|
| 24 |
+
Trainer,
|
| 25 |
+
TrainerCallback,
|
| 26 |
+
TrainingArguments,
|
| 27 |
+
)
|
| 28 |
from transformers.trainer_utils import seed_worker
|
| 29 |
from trl import DPOTrainer
|
| 30 |
|
|
|
|
| 465 |
_train_dataset = None
|
| 466 |
_eval_dataset = None
|
| 467 |
_model_ref = None
|
| 468 |
+
_peft_config = None
|
| 469 |
|
| 470 |
def __init__(self, cfg, model, tokenizer):
|
| 471 |
self.cfg = cfg
|
|
|
|
| 496 |
def eval_dataset(self, dataset):
|
| 497 |
self._eval_dataset = dataset
|
| 498 |
|
| 499 |
+
@property
|
| 500 |
+
def peft_config(self):
|
| 501 |
+
return self._peft_config
|
| 502 |
+
|
| 503 |
+
@peft_config.setter
|
| 504 |
+
def peft_config(self, peft_config):
|
| 505 |
+
self._peft_config = peft_config
|
| 506 |
+
|
| 507 |
@abstractmethod
|
| 508 |
def build(self, total_num_steps):
|
| 509 |
pass
|
| 510 |
|
| 511 |
+
def get_callbacks(self) -> List[TrainerCallback]:
|
| 512 |
+
callbacks = []
|
| 513 |
+
if self.cfg.use_wandb:
|
| 514 |
+
callbacks.append(
|
| 515 |
+
SaveAxolotlConfigtoWandBCallback(self.cfg.axolotl_config_path)
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
return callbacks
|
| 519 |
|
| 520 |
@abstractmethod
|
| 521 |
def get_post_trainer_create_callbacks(self, trainer):
|
|
|
|
| 523 |
Callbacks added after the trainer is created, usually b/c these need access to the trainer
|
| 524 |
"""
|
| 525 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
def hook_pre_create_training_args(self, training_arguments_kwargs):
|
| 527 |
# TODO
|
| 528 |
return training_arguments_kwargs
|
|
|
|
| 539 |
# TODO
|
| 540 |
return trainer
|
| 541 |
|
| 542 |
+
|
| 543 |
+
class HFCausalTrainerBuilder(TrainerBuilderBase):
|
| 544 |
+
"""
|
| 545 |
+
Build the HuggingFace training args/trainer for Causal models
|
| 546 |
+
"""
|
| 547 |
+
|
| 548 |
def get_callbacks(self):
|
| 549 |
+
callbacks = super().get_callbacks()
|
| 550 |
callbacks.append(GPUStatsCallback(self.cfg))
|
| 551 |
+
callbacks.append(EvalFirstStepCallback())
|
| 552 |
|
| 553 |
if self.cfg.relora_steps:
|
| 554 |
callbacks.append(ReLoRACallback(self.cfg))
|
|
|
|
| 557 |
hasattr(self.model, "use_bettertransformer")
|
| 558 |
and self.model.use_bettertransformer is True
|
| 559 |
):
|
| 560 |
+
callbacks.append(SaveBetterTransformerModelCallback())
|
| 561 |
|
| 562 |
if self.cfg.use_wandb:
|
| 563 |
callbacks.append(
|
|
|
|
| 950 |
"""
|
| 951 |
|
| 952 |
def get_callbacks(self):
|
| 953 |
+
callbacks = super().get_callbacks()
|
| 954 |
return callbacks
|
| 955 |
|
| 956 |
def get_post_trainer_create_callbacks(self, trainer):
|
|
|
|
| 968 |
]:
|
| 969 |
if hasattr(self.cfg, arg) and getattr(self.cfg, arg) is not None:
|
| 970 |
training_args_kwargs[arg] = getattr(self.cfg, arg)
|
| 971 |
+
|
| 972 |
+
if self.cfg.hub_model_id:
|
| 973 |
+
training_args_kwargs["hub_model_id"] = self.cfg.hub_model_id
|
| 974 |
+
training_args_kwargs["push_to_hub"] = True
|
| 975 |
+
training_args_kwargs["hub_private_repo"] = True
|
| 976 |
+
training_args_kwargs["hub_always_push"] = True
|
| 977 |
+
|
| 978 |
+
if self.cfg.hub_strategy:
|
| 979 |
+
training_args_kwargs["hub_strategy"] = self.cfg.hub_strategy
|
| 980 |
+
|
| 981 |
+
if self.cfg.save_safetensors is not None:
|
| 982 |
+
training_args_kwargs["save_safetensors"] = self.cfg.save_safetensors
|
| 983 |
+
|
| 984 |
+
if self.eval_dataset:
|
| 985 |
+
training_args_kwargs["evaluation_strategy"] = "steps"
|
| 986 |
+
training_args_kwargs["eval_steps"] = self.cfg.eval_steps
|
| 987 |
+
else:
|
| 988 |
+
training_args_kwargs["evaluation_strategy"] = "no"
|
| 989 |
+
if self.cfg.bf16 or self.cfg.bfloat16:
|
| 990 |
+
training_args_kwargs["bf16"] = True
|
| 991 |
+
|
| 992 |
+
training_args_kwargs["lr_scheduler_type"] = (
|
| 993 |
+
self.cfg.lr_scheduler if self.cfg.lr_scheduler else "cosine"
|
| 994 |
+
)
|
| 995 |
+
training_args_kwargs["lr_scheduler_kwargs"] = (
|
| 996 |
+
self.cfg.lr_scheduler_kwargs if self.cfg.lr_scheduler_kwargs else {}
|
| 997 |
+
)
|
| 998 |
+
|
| 999 |
+
if self.cfg.dataloader_pin_memory is not None:
|
| 1000 |
+
training_args_kwargs[
|
| 1001 |
+
"dataloader_pin_memory"
|
| 1002 |
+
] = self.cfg.dataloader_pin_memory
|
| 1003 |
+
if self.cfg.dataloader_num_workers is not None:
|
| 1004 |
+
training_args_kwargs[
|
| 1005 |
+
"dataloader_num_workers"
|
| 1006 |
+
] = self.cfg.dataloader_num_workers
|
| 1007 |
+
if self.cfg.dataloader_prefetch_factor is not None:
|
| 1008 |
+
training_args_kwargs[
|
| 1009 |
+
"dataloader_prefetch_factor"
|
| 1010 |
+
] = self.cfg.dataloader_prefetch_factor
|
| 1011 |
+
|
| 1012 |
training_args = TrainingArguments(
|
| 1013 |
per_device_train_batch_size=self.cfg.micro_batch_size,
|
| 1014 |
+
max_steps=self.cfg.max_steps or total_num_steps,
|
| 1015 |
remove_unused_columns=False,
|
| 1016 |
gradient_accumulation_steps=self.cfg.gradient_accumulation_steps,
|
| 1017 |
learning_rate=self.cfg.learning_rate,
|
|
|
|
|
|
|
| 1018 |
save_strategy="steps",
|
| 1019 |
save_steps=self.cfg.save_steps,
|
| 1020 |
output_dir=self.cfg.output_dir,
|
| 1021 |
warmup_steps=self.cfg.warmup_steps,
|
|
|
|
| 1022 |
gradient_checkpointing=self.cfg.gradient_checkpointing,
|
| 1023 |
+
gradient_checkpointing_kwargs=self.cfg.gradient_checkpointing_kwargs
|
| 1024 |
+
or {"use_reentrant": False},
|
| 1025 |
logging_first_step=True,
|
| 1026 |
logging_steps=1,
|
| 1027 |
optim=self.cfg.optimizer,
|
|
|
|
| 1040 |
dpo_trainer_kwargs["label_smoothing"] = self.cfg.dpo_label_smoothing
|
| 1041 |
elif self.cfg.rl == "kto_pair":
|
| 1042 |
dpo_trainer_kwargs["loss_type"] = "kto_pair"
|
| 1043 |
+
if self.eval_dataset:
|
| 1044 |
+
dpo_trainer_kwargs["eval_dataset"] = self.eval_dataset
|
| 1045 |
+
if self.cfg.adapter and self.peft_config:
|
| 1046 |
+
dpo_trainer_kwargs["peft_config"] = self.peft_config
|
| 1047 |
dpo_trainer = DPOTrainer(
|
| 1048 |
self.model,
|
| 1049 |
self.model_ref,
|
| 1050 |
args=training_args,
|
| 1051 |
beta=self.cfg.dpo_beta or 0.1,
|
| 1052 |
train_dataset=self.train_dataset,
|
|
|
|
|
|
|
| 1053 |
tokenizer=self.tokenizer,
|
| 1054 |
max_length=self.cfg.sequence_len,
|
| 1055 |
max_target_length=None,
|
| 1056 |
max_prompt_length=self.cfg.sequence_len,
|
| 1057 |
generate_during_eval=True,
|
| 1058 |
+
callbacks=self.get_callbacks(),
|
| 1059 |
**dpo_trainer_kwargs,
|
| 1060 |
)
|
| 1061 |
+
dpo_trainer = self.hook_post_create_trainer(dpo_trainer)
|
| 1062 |
+
for callback in self.get_post_trainer_create_callbacks(dpo_trainer):
|
| 1063 |
+
dpo_trainer.add_callback(callback)
|
| 1064 |
|
| 1065 |
return dpo_trainer
|
| 1066 |
|
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
module for DPO style dataset transform strategies
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import importlib
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
LOG = logging.getLogger("axolotl")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def load(strategy, cfg):
|
| 12 |
+
try:
|
| 13 |
+
load_fn = strategy.split(".")[-1]
|
| 14 |
+
strategy = ".".join(strategy.split(".")[:-1])
|
| 15 |
+
mod = importlib.import_module(f".{strategy}", "axolotl.prompt_strategies.dpo")
|
| 16 |
+
func = getattr(mod, load_fn)
|
| 17 |
+
load_kwargs = {}
|
| 18 |
+
return func(cfg, **load_kwargs)
|
| 19 |
+
except Exception: # pylint: disable=broad-exception-caught
|
| 20 |
+
LOG.warning(f"unable to load strategy {strategy}")
|
| 21 |
+
return None
|
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
DPO strategies for chatml
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def argilla(
|
| 7 |
+
cfg,
|
| 8 |
+
): # pylint: disable=possibly-unused-variable,unused-argument
|
| 9 |
+
def transform_fn(sample):
|
| 10 |
+
if "system" in sample and sample["system"]:
|
| 11 |
+
sample["prompt"] = (
|
| 12 |
+
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
|
| 13 |
+
f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n"
|
| 14 |
+
)
|
| 15 |
+
else:
|
| 16 |
+
sample[
|
| 17 |
+
"prompt"
|
| 18 |
+
] = f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n"
|
| 19 |
+
sample["chosen"] = f"{sample['chosen_response']}<|im_end|>"
|
| 20 |
+
sample["rejected"] = f"{sample['rejected_response']}<|im_end|>"
|
| 21 |
+
return sample
|
| 22 |
+
|
| 23 |
+
return transform_fn
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def intel(cfg): # pylint: disable=possibly-unused-variable,unused-argument
|
| 27 |
+
"""
|
| 28 |
+
For Intel Orca DPO Pairs
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
def transform_fn(sample):
|
| 32 |
+
if "system" in sample and sample["system"]:
|
| 33 |
+
sample["prompt"] = (
|
| 34 |
+
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
|
| 35 |
+
f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n"
|
| 36 |
+
)
|
| 37 |
+
else:
|
| 38 |
+
sample[
|
| 39 |
+
"prompt"
|
| 40 |
+
] = f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n"
|
| 41 |
+
sample["chosen"] = f"{sample['chosen']}<|im_end|>"
|
| 42 |
+
sample["rejected"] = f"{sample['rejected']}<|im_end|>"
|
| 43 |
+
return sample
|
| 44 |
+
|
| 45 |
+
return transform_fn
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def prompt_pairs(cfg): # pylint: disable=possibly-unused-variable,unused-argument
|
| 49 |
+
def transform_fn(sample):
|
| 50 |
+
if "system" in sample and sample["system"]:
|
| 51 |
+
sample["prompt"] = (
|
| 52 |
+
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
|
| 53 |
+
f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
|
| 54 |
+
)
|
| 55 |
+
else:
|
| 56 |
+
sample[
|
| 57 |
+
"prompt"
|
| 58 |
+
] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
|
| 59 |
+
sample["chosen"] = f"{sample['chosen']}<|im_end|>"
|
| 60 |
+
sample["rejected"] = f"{sample['rejected']}<|im_end|>"
|
| 61 |
+
return sample
|
| 62 |
+
|
| 63 |
+
return transform_fn
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def ultra(cfg): # pylint: disable=possibly-unused-variable,unused-argument
|
| 67 |
+
"""
|
| 68 |
+
for ultrafeedback binarized conversations
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
def transform_fn(sample):
|
| 72 |
+
if "system" in sample and sample["system"]:
|
| 73 |
+
sample["prompt"] = (
|
| 74 |
+
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
|
| 75 |
+
f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
|
| 76 |
+
)
|
| 77 |
+
else:
|
| 78 |
+
sample[
|
| 79 |
+
"prompt"
|
| 80 |
+
] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
|
| 81 |
+
sample["chosen"] = f"{sample['chosen'][1]['content']}<|im_end|>"
|
| 82 |
+
sample["rejected"] = f"{sample['rejected'][1]['content']}<|im_end|>"
|
| 83 |
+
return sample
|
| 84 |
+
|
| 85 |
+
return transform_fn
|
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
DPO strategies for zephyr
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def nectar(cfg): # pylint: disable=possibly-unused-variable,unused-argument
|
| 7 |
+
def transform_fn(sample):
|
| 8 |
+
data = {}
|
| 9 |
+
data["prompt"] = (
|
| 10 |
+
"<|system|>\n</s>\n"
|
| 11 |
+
"<|user|>\n"
|
| 12 |
+
f"{sample['prompt']}</s>\n"
|
| 13 |
+
"<|assistant|>\n"
|
| 14 |
+
)
|
| 15 |
+
answers = sorted(sample["answers"], key=lambda x: x["rank"])
|
| 16 |
+
data["chosen"] = answers[-1]["answer"]
|
| 17 |
+
data["rejected"] = answers[-2]["answer"]
|
| 18 |
+
|
| 19 |
+
return data
|
| 20 |
+
|
| 21 |
+
return transform_fn
|
|
@@ -96,7 +96,12 @@ def train(
|
|
| 96 |
freeze_parameters_except(model, cfg.unfrozen_parameters)
|
| 97 |
|
| 98 |
trainer = setup_trainer(
|
| 99 |
-
cfg,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
|
| 102 |
if hasattr(model, "config"):
|
|
|
|
| 96 |
freeze_parameters_except(model, cfg.unfrozen_parameters)
|
| 97 |
|
| 98 |
trainer = setup_trainer(
|
| 99 |
+
cfg,
|
| 100 |
+
train_dataset,
|
| 101 |
+
eval_dataset,
|
| 102 |
+
(model, model_ref, peft_config),
|
| 103 |
+
tokenizer,
|
| 104 |
+
total_num_steps,
|
| 105 |
)
|
| 106 |
|
| 107 |
if hasattr(model, "config"):
|
|
@@ -4,7 +4,7 @@ import hashlib
|
|
| 4 |
import logging
|
| 5 |
from collections import defaultdict
|
| 6 |
from pathlib import Path
|
| 7 |
-
from typing import Dict, List, Optional, Tuple, Union
|
| 8 |
|
| 9 |
import torch
|
| 10 |
from datasets import (
|
|
@@ -21,6 +21,7 @@ from transformers import PreTrainedTokenizerBase
|
|
| 21 |
from axolotl.common.const import DEFAULT_DATASET_PREPARED_PATH
|
| 22 |
from axolotl.datasets import TokenizedPromptDataset
|
| 23 |
from axolotl.prompt_strategies import load
|
|
|
|
| 24 |
from axolotl.prompt_tokenizers import (
|
| 25 |
AlpacaMultipleChoicePromptTokenizingStrategy,
|
| 26 |
AlpacaPromptTokenizingStrategy,
|
|
@@ -850,3 +851,50 @@ def encode_packed_pretraining(
|
|
| 850 |
chunked_data[feature].append(collated_features[feature].squeeze(0))
|
| 851 |
|
| 852 |
return chunked_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import logging
|
| 5 |
from collections import defaultdict
|
| 6 |
from pathlib import Path
|
| 7 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 8 |
|
| 9 |
import torch
|
| 10 |
from datasets import (
|
|
|
|
| 21 |
from axolotl.common.const import DEFAULT_DATASET_PREPARED_PATH
|
| 22 |
from axolotl.datasets import TokenizedPromptDataset
|
| 23 |
from axolotl.prompt_strategies import load
|
| 24 |
+
from axolotl.prompt_strategies.dpo import load as load_dpo
|
| 25 |
from axolotl.prompt_tokenizers import (
|
| 26 |
AlpacaMultipleChoicePromptTokenizingStrategy,
|
| 27 |
AlpacaPromptTokenizingStrategy,
|
|
|
|
| 851 |
chunked_data[feature].append(collated_features[feature].squeeze(0))
|
| 852 |
|
| 853 |
return chunked_data
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
def load_prepare_dpo_datasets(cfg):
|
| 857 |
+
def load_split(dataset_cfgs, _cfg):
|
| 858 |
+
split_datasets: List[Any] = []
|
| 859 |
+
for i, ds_cfg in enumerate(dataset_cfgs):
|
| 860 |
+
if ds_cfg["ds_type"] == "json":
|
| 861 |
+
for data_file in ds_cfg["data_files"]:
|
| 862 |
+
data_files = {ds_cfg["split"]: data_file}
|
| 863 |
+
ds = load_dataset( # pylint: disable=invalid-name
|
| 864 |
+
"json",
|
| 865 |
+
data_files=data_files,
|
| 866 |
+
split=ds_cfg["split"],
|
| 867 |
+
)
|
| 868 |
+
split_datasets.insert(i, ds)
|
| 869 |
+
else:
|
| 870 |
+
ds = load_dataset( # pylint: disable=invalid-name
|
| 871 |
+
ds_cfg["path"],
|
| 872 |
+
split=ds_cfg["split"],
|
| 873 |
+
)
|
| 874 |
+
split_datasets.insert(i, ds)
|
| 875 |
+
|
| 876 |
+
for i, data_set in enumerate(split_datasets):
|
| 877 |
+
_type = dataset_cfgs[i]["type"]
|
| 878 |
+
if _type:
|
| 879 |
+
ds_transform_fn = load_dpo(_type, _cfg)
|
| 880 |
+
split_datasets[i] = data_set.map(
|
| 881 |
+
ds_transform_fn,
|
| 882 |
+
desc="Mapping RL Dataset",
|
| 883 |
+
)
|
| 884 |
+
else:
|
| 885 |
+
# If no `type` is provided, assume the dataset is already in the expected format with
|
| 886 |
+
# "prompt", "chosen" and "rejected" already preprocessed
|
| 887 |
+
split_datasets[i] = data_set
|
| 888 |
+
|
| 889 |
+
return concatenate_datasets(split_datasets)
|
| 890 |
+
|
| 891 |
+
with zero_first(is_main_process()):
|
| 892 |
+
train_dataset = load_split(cfg.datasets, cfg)
|
| 893 |
+
|
| 894 |
+
eval_dataset = None
|
| 895 |
+
if cfg.test_datasets:
|
| 896 |
+
eval_dataset = load_split(cfg.test_datasets, cfg)
|
| 897 |
+
if not eval_dataset:
|
| 898 |
+
eval_dataset = None
|
| 899 |
+
|
| 900 |
+
return train_dataset, eval_dataset
|
|
@@ -682,7 +682,12 @@ def load_model(
|
|
| 682 |
|
| 683 |
lora_config = None
|
| 684 |
if not reference_model or cfg.lora_model_dir:
|
| 685 |
-
model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 686 |
|
| 687 |
if cfg.ddp and not load_in_8bit and not (cfg.rl and cfg.load_in_4bit):
|
| 688 |
model.to(f"cuda:{cfg.local_rank}")
|
|
@@ -770,8 +775,8 @@ def find_all_linear_names(model):
|
|
| 770 |
return list(lora_module_names)
|
| 771 |
|
| 772 |
|
| 773 |
-
def load_lora(model, cfg, inference=False):
|
| 774 |
-
# type: (PreTrainedModel, DictDefault, bool) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
| 775 |
|
| 776 |
from peft import LoraConfig, PeftModel, get_peft_model
|
| 777 |
|
|
@@ -794,6 +799,9 @@ def load_lora(model, cfg, inference=False):
|
|
| 794 |
task_type="CAUSAL_LM",
|
| 795 |
)
|
| 796 |
|
|
|
|
|
|
|
|
|
|
| 797 |
if cfg.lora_model_dir:
|
| 798 |
LOG.debug("Loading pretained PEFT - LoRA")
|
| 799 |
model_kwargs: Any = {}
|
|
|
|
| 682 |
|
| 683 |
lora_config = None
|
| 684 |
if not reference_model or cfg.lora_model_dir:
|
| 685 |
+
# if we're not loading the reference model, then we're loading the model for training
|
| 686 |
+
# then the dpo trainer doesn't want the peft model loaded over it, it just wants the lora/peft config
|
| 687 |
+
if cfg.adapter and cfg.rl in ["dpo", "ipo", "kto_pair"] and not cfg.merge_lora:
|
| 688 |
+
_, lora_config = load_lora(model, cfg, inference=False, config_only=True)
|
| 689 |
+
else:
|
| 690 |
+
model, lora_config = load_adapter(model, cfg, cfg.adapter)
|
| 691 |
|
| 692 |
if cfg.ddp and not load_in_8bit and not (cfg.rl and cfg.load_in_4bit):
|
| 693 |
model.to(f"cuda:{cfg.local_rank}")
|
|
|
|
| 775 |
return list(lora_module_names)
|
| 776 |
|
| 777 |
|
| 778 |
+
def load_lora(model, cfg, inference=False, config_only=False):
|
| 779 |
+
# type: (PreTrainedModel, DictDefault, bool, bool) -> Tuple[Optional[PreTrainedModel], Optional[PeftConfig]]
|
| 780 |
|
| 781 |
from peft import LoraConfig, PeftModel, get_peft_model
|
| 782 |
|
|
|
|
| 799 |
task_type="CAUSAL_LM",
|
| 800 |
)
|
| 801 |
|
| 802 |
+
if config_only:
|
| 803 |
+
return None, lora_config
|
| 804 |
+
|
| 805 |
if cfg.lora_model_dir:
|
| 806 |
LOG.debug("Loading pretained PEFT - LoRA")
|
| 807 |
model_kwargs: Any = {}
|
|
@@ -316,9 +316,10 @@ def prepare_optim_env(cfg):
|
|
| 316 |
|
| 317 |
|
| 318 |
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps):
|
| 319 |
-
if cfg.rl:
|
| 320 |
trainer_builder = HFDPOTrainerBuilder(cfg, model[0], tokenizer)
|
| 321 |
trainer_builder.model_ref = model[1]
|
|
|
|
| 322 |
else:
|
| 323 |
trainer_builder = HFCausalTrainerBuilder(cfg, model[0], tokenizer)
|
| 324 |
|
|
|
|
| 316 |
|
| 317 |
|
| 318 |
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps):
|
| 319 |
+
if cfg.rl in ["dpo", "ipo", "kto_pair"]:
|
| 320 |
trainer_builder = HFDPOTrainerBuilder(cfg, model[0], tokenizer)
|
| 321 |
trainer_builder.model_ref = model[1]
|
| 322 |
+
trainer_builder.peft_config = model[2]
|
| 323 |
else:
|
| 324 |
trainer_builder = HFCausalTrainerBuilder(cfg, model[0], tokenizer)
|
| 325 |
|
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
E2E tests for lora llama
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import logging
|
| 6 |
+
import os
|
| 7 |
+
import unittest
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
from axolotl.cli import load_rl_datasets
|
| 11 |
+
from axolotl.common.cli import TrainerCliArgs
|
| 12 |
+
from axolotl.train import train
|
| 13 |
+
from axolotl.utils.config import normalize_config
|
| 14 |
+
from axolotl.utils.dict import DictDefault
|
| 15 |
+
|
| 16 |
+
from .utils import with_temp_dir
|
| 17 |
+
|
| 18 |
+
LOG = logging.getLogger("axolotl.tests.e2e")
|
| 19 |
+
os.environ["WANDB_DISABLED"] = "true"
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class TestDPOLlamaLora(unittest.TestCase):
|
| 23 |
+
"""
|
| 24 |
+
Test case for DPO Llama models using LoRA
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
@with_temp_dir
|
| 28 |
+
def test_dpo_lora(self, temp_dir):
|
| 29 |
+
# pylint: disable=duplicate-code
|
| 30 |
+
cfg = DictDefault(
|
| 31 |
+
{
|
| 32 |
+
"base_model": "JackFram/llama-68m",
|
| 33 |
+
"tokenizer_type": "LlamaTokenizer",
|
| 34 |
+
"sequence_len": 1024,
|
| 35 |
+
"load_in_8bit": True,
|
| 36 |
+
"adapter": "lora",
|
| 37 |
+
"lora_r": 64,
|
| 38 |
+
"lora_alpha": 32,
|
| 39 |
+
"lora_dropout": 0.1,
|
| 40 |
+
"lora_target_linear": True,
|
| 41 |
+
"special_tokens": {},
|
| 42 |
+
"rl": "dpo",
|
| 43 |
+
"datasets": [
|
| 44 |
+
{
|
| 45 |
+
"path": "Intel/orca_dpo_pairs",
|
| 46 |
+
"type": "chatml.intel",
|
| 47 |
+
"split": "train",
|
| 48 |
+
},
|
| 49 |
+
],
|
| 50 |
+
"num_epochs": 1,
|
| 51 |
+
"micro_batch_size": 4,
|
| 52 |
+
"gradient_accumulation_steps": 1,
|
| 53 |
+
"output_dir": temp_dir,
|
| 54 |
+
"learning_rate": 0.00001,
|
| 55 |
+
"optimizer": "paged_adamw_8bit",
|
| 56 |
+
"lr_scheduler": "cosine",
|
| 57 |
+
"max_steps": 20,
|
| 58 |
+
"save_steps": 10,
|
| 59 |
+
"warmup_steps": 5,
|
| 60 |
+
"gradient_checkpointing": True,
|
| 61 |
+
"gradient_checkpointing_kwargs": {"use_reentrant": True},
|
| 62 |
+
}
|
| 63 |
+
)
|
| 64 |
+
normalize_config(cfg)
|
| 65 |
+
cli_args = TrainerCliArgs()
|
| 66 |
+
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
|
| 67 |
+
|
| 68 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
| 69 |
+
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()
|
| 70 |
+
|
| 71 |
+
@with_temp_dir
|
| 72 |
+
def test_kto_pair_lora(self, temp_dir):
|
| 73 |
+
# pylint: disable=duplicate-code
|
| 74 |
+
cfg = DictDefault(
|
| 75 |
+
{
|
| 76 |
+
"base_model": "JackFram/llama-68m",
|
| 77 |
+
"tokenizer_type": "LlamaTokenizer",
|
| 78 |
+
"sequence_len": 1024,
|
| 79 |
+
"load_in_8bit": True,
|
| 80 |
+
"adapter": "lora",
|
| 81 |
+
"lora_r": 64,
|
| 82 |
+
"lora_alpha": 32,
|
| 83 |
+
"lora_dropout": 0.1,
|
| 84 |
+
"lora_target_linear": True,
|
| 85 |
+
"special_tokens": {},
|
| 86 |
+
"rl": "kto_pair",
|
| 87 |
+
"datasets": [
|
| 88 |
+
{
|
| 89 |
+
"path": "Intel/orca_dpo_pairs",
|
| 90 |
+
"type": "chatml.intel",
|
| 91 |
+
"split": "train",
|
| 92 |
+
},
|
| 93 |
+
],
|
| 94 |
+
"num_epochs": 1,
|
| 95 |
+
"micro_batch_size": 4,
|
| 96 |
+
"gradient_accumulation_steps": 1,
|
| 97 |
+
"output_dir": temp_dir,
|
| 98 |
+
"learning_rate": 0.00001,
|
| 99 |
+
"optimizer": "paged_adamw_8bit",
|
| 100 |
+
"lr_scheduler": "cosine",
|
| 101 |
+
"max_steps": 20,
|
| 102 |
+
"save_steps": 10,
|
| 103 |
+
"warmup_steps": 5,
|
| 104 |
+
"gradient_checkpointing": True,
|
| 105 |
+
"gradient_checkpointing_kwargs": {"use_reentrant": True},
|
| 106 |
+
}
|
| 107 |
+
)
|
| 108 |
+
normalize_config(cfg)
|
| 109 |
+
cli_args = TrainerCliArgs()
|
| 110 |
+
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
|
| 111 |
+
|
| 112 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
| 113 |
+
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()
|
| 114 |
+
|
| 115 |
+
@with_temp_dir
|
| 116 |
+
def test_ipo_lora(self, temp_dir):
|
| 117 |
+
# pylint: disable=duplicate-code
|
| 118 |
+
cfg = DictDefault(
|
| 119 |
+
{
|
| 120 |
+
"base_model": "JackFram/llama-68m",
|
| 121 |
+
"tokenizer_type": "LlamaTokenizer",
|
| 122 |
+
"sequence_len": 1024,
|
| 123 |
+
"load_in_8bit": True,
|
| 124 |
+
"adapter": "lora",
|
| 125 |
+
"lora_r": 64,
|
| 126 |
+
"lora_alpha": 32,
|
| 127 |
+
"lora_dropout": 0.1,
|
| 128 |
+
"lora_target_linear": True,
|
| 129 |
+
"special_tokens": {},
|
| 130 |
+
"rl": "ipo",
|
| 131 |
+
"datasets": [
|
| 132 |
+
{
|
| 133 |
+
"path": "Intel/orca_dpo_pairs",
|
| 134 |
+
"type": "chatml.intel",
|
| 135 |
+
"split": "train",
|
| 136 |
+
},
|
| 137 |
+
],
|
| 138 |
+
"num_epochs": 1,
|
| 139 |
+
"micro_batch_size": 4,
|
| 140 |
+
"gradient_accumulation_steps": 1,
|
| 141 |
+
"output_dir": temp_dir,
|
| 142 |
+
"learning_rate": 0.00001,
|
| 143 |
+
"optimizer": "paged_adamw_8bit",
|
| 144 |
+
"lr_scheduler": "cosine",
|
| 145 |
+
"max_steps": 20,
|
| 146 |
+
"save_steps": 10,
|
| 147 |
+
"warmup_steps": 5,
|
| 148 |
+
"gradient_checkpointing": True,
|
| 149 |
+
"gradient_checkpointing_kwargs": {"use_reentrant": True},
|
| 150 |
+
}
|
| 151 |
+
)
|
| 152 |
+
normalize_config(cfg)
|
| 153 |
+
cli_args = TrainerCliArgs()
|
| 154 |
+
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
|
| 155 |
+
|
| 156 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
| 157 |
+
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()
|