|  | """ | 
					
						
						|  | Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import Optional, Tuple | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import transformers.models.llama.modeling_llama | 
					
						
						|  | from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | import xformers.ops | 
					
						
						|  | except ImportError: | 
					
						
						|  | logging.error("xformers not found! Please install it before trying to use it.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def hijack_llama_attention(): | 
					
						
						|  | transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def xformers_forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | if not hasattr(self, "pretraining_tp"): | 
					
						
						|  | self.pretraining_tp = 1 | 
					
						
						|  |  | 
					
						
						|  | if self.pretraining_tp > 1: | 
					
						
						|  | key_value_slicing = ( | 
					
						
						|  | self.num_key_value_heads * self.head_dim | 
					
						
						|  | ) // self.pretraining_tp | 
					
						
						|  | query_slices = self.q_proj.weight.split( | 
					
						
						|  | (self.num_heads * self.head_dim) // self.pretraining_tp, dim=0 | 
					
						
						|  | ) | 
					
						
						|  | key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) | 
					
						
						|  | value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) | 
					
						
						|  |  | 
					
						
						|  | query_states = [ | 
					
						
						|  | F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp) | 
					
						
						|  | ] | 
					
						
						|  | query_states = torch.cat(query_states, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | key_states = [ | 
					
						
						|  | F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp) | 
					
						
						|  | ] | 
					
						
						|  | key_states = torch.cat(key_states, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | value_states = [ | 
					
						
						|  | F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp) | 
					
						
						|  | ] | 
					
						
						|  | value_states = torch.cat(value_states, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view( | 
					
						
						|  | bsz, q_len, self.num_heads, self.head_dim | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view( | 
					
						
						|  | bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view( | 
					
						
						|  | bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value[0].shape[-2] | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb( | 
					
						
						|  | query_states, key_states, cos, sin, position_ids | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
						
						|  | value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
						
						|  |  | 
					
						
						|  | past_key_value = (key_states, value_states) if use_cache else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None or attention_mask[0, 0, 0, 1] == 0: | 
					
						
						|  |  | 
					
						
						|  | attn_output = xformers.ops.memory_efficient_attention( | 
					
						
						|  | query_states, key_states, value_states, attn_bias=None | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attn_output = xformers.ops.memory_efficient_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  |  | 
					
						
						|  | attn_bias=xformers.ops.LowerTriangularMask(), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.pretraining_tp > 1: | 
					
						
						|  | attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2) | 
					
						
						|  | o_proj_slices = self.o_proj.weight.split( | 
					
						
						|  | self.hidden_size // self.pretraining_tp, dim=1 | 
					
						
						|  | ) | 
					
						
						|  | attn_output = sum( | 
					
						
						|  | F.linear(attn_output[i], o_proj_slices[i]) | 
					
						
						|  | for i in range(self.pretraining_tp) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  |