|  | """ | 
					
						
						|  | Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import math | 
					
						
						|  | from typing import Optional, Tuple | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import transformers.models.llama.modeling_llama | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | import xformers.ops | 
					
						
						|  | except ImportError: | 
					
						
						|  | logging.error("xformers not found! Please install it before trying to use it.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def hijack_llama_attention(): | 
					
						
						|  | transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def hijack_llama_sdp_attention(): | 
					
						
						|  | transformers.models.llama.modeling_llama.LlamaAttention.forward = ( | 
					
						
						|  | sdp_attention_forward | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def xformers_forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = ( | 
					
						
						|  | self.q_proj(hidden_states) | 
					
						
						|  | .view(bsz, q_len, self.num_heads, self.head_dim) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | ) | 
					
						
						|  | key_states = ( | 
					
						
						|  | self.k_proj(hidden_states) | 
					
						
						|  | .view(bsz, q_len, self.num_heads, self.head_dim) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | ) | 
					
						
						|  | value_states = ( | 
					
						
						|  | self.v_proj(hidden_states) | 
					
						
						|  | .view(bsz, q_len, self.num_heads, self.head_dim) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value[0].shape[-2] | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  | ( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | ) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb( | 
					
						
						|  | query_states, key_states, cos, sin, position_ids | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
						
						|  | value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
						
						|  |  | 
					
						
						|  | past_key_value = (key_states, value_states) if use_cache else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None or attention_mask[0, 0, 0, 1] == 0: | 
					
						
						|  |  | 
					
						
						|  | attn_output = xformers.ops.memory_efficient_attention( | 
					
						
						|  | query_states, key_states, value_states, attn_bias=None | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attn_output = xformers.ops.memory_efficient_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_bias=xformers.ops.LowerTriangularMask(), | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = None | 
					
						
						|  | else: | 
					
						
						|  | attn_weights = torch.matmul( | 
					
						
						|  | query_states, key_states.transpose(2, 3) | 
					
						
						|  | ) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  | attn_weights = torch.max( | 
					
						
						|  | attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax( | 
					
						
						|  | attn_weights, dim=-1, dtype=torch.float32 | 
					
						
						|  | ).to(query_states.dtype) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sdp_attention_forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = ( | 
					
						
						|  | self.q_proj(hidden_states) | 
					
						
						|  | .view(bsz, q_len, self.num_heads, self.head_dim) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | ) | 
					
						
						|  | key_states = ( | 
					
						
						|  | self.k_proj(hidden_states) | 
					
						
						|  | .view(bsz, q_len, self.num_heads, self.head_dim) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | ) | 
					
						
						|  | value_states = ( | 
					
						
						|  | self.v_proj(hidden_states) | 
					
						
						|  | .view(bsz, q_len, self.num_heads, self.head_dim) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value[0].shape[-2] | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  | ( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | ) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb( | 
					
						
						|  | query_states, key_states, cos, sin, position_ids | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
						
						|  | value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
						
						|  |  | 
					
						
						|  | past_key_value = (key_states, value_states) if use_cache else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=attention_mask, | 
					
						
						|  | is_causal=False, | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = None | 
					
						
						|  | else: | 
					
						
						|  | attn_weights = torch.matmul( | 
					
						
						|  | query_states, key_states.transpose(2, 3) | 
					
						
						|  | ) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  | attn_weights = torch.max( | 
					
						
						|  | attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax( | 
					
						
						|  | attn_weights, dim=-1, dtype=torch.float32 | 
					
						
						|  | ).to(query_states.dtype) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2) | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  |