|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from typing import Optional | 
					
						
						|  |  | 
					
						
						|  | from transformers import PretrainedConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiConfig(PretrainedConfig): | 
					
						
						|  | """Phi configuration.""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "phi" | 
					
						
						|  | attribute_map = { | 
					
						
						|  | "max_position_embeddings": "n_positions", | 
					
						
						|  | "hidden_size": "n_embd", | 
					
						
						|  | "num_attention_heads": "n_head", | 
					
						
						|  | "num_hidden_layers": "n_layer", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size: int = 50304, | 
					
						
						|  | n_positions: int = 2048, | 
					
						
						|  | n_embd: int = 1024, | 
					
						
						|  | n_layer: int = 20, | 
					
						
						|  | n_inner: Optional[int] = None, | 
					
						
						|  | n_head: int = 16, | 
					
						
						|  | n_head_kv: Optional[int] = None, | 
					
						
						|  | rotary_dim: Optional[int] = 32, | 
					
						
						|  | activation_function: Optional[str] = "gelu_new", | 
					
						
						|  | flash_attn: bool = False, | 
					
						
						|  | flash_rotary: bool = False, | 
					
						
						|  | fused_dense: bool = False, | 
					
						
						|  | attn_pdrop: float = 0.0, | 
					
						
						|  | embd_pdrop: float = 0.0, | 
					
						
						|  | resid_pdrop: float = 0.0, | 
					
						
						|  | layer_norm_epsilon: float = 1e-5, | 
					
						
						|  | initializer_range: float = 0.02, | 
					
						
						|  | tie_word_embeddings: bool = False, | 
					
						
						|  | pad_vocab_size_multiple: int = 64, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) -> None: | 
					
						
						|  | self.vocab_size = int( | 
					
						
						|  | math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple | 
					
						
						|  | ) | 
					
						
						|  | self.n_positions = n_positions | 
					
						
						|  | self.n_embd = n_embd | 
					
						
						|  | self.n_layer = n_layer | 
					
						
						|  | self.n_inner = n_inner | 
					
						
						|  | self.n_head = n_head | 
					
						
						|  | self.n_head_kv = n_head_kv | 
					
						
						|  | self.rotary_dim = min(rotary_dim, n_embd // n_head) | 
					
						
						|  | self.activation_function = activation_function | 
					
						
						|  | self.flash_attn = flash_attn | 
					
						
						|  | self.flash_rotary = flash_rotary | 
					
						
						|  | self.fused_dense = fused_dense | 
					
						
						|  | self.attn_pdrop = attn_pdrop | 
					
						
						|  | self.embd_pdrop = embd_pdrop | 
					
						
						|  | self.resid_pdrop = resid_pdrop | 
					
						
						|  | self.layer_norm_epsilon = layer_norm_epsilon | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  |  | 
					
						
						|  | super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) | 
					
						
						|  |  |