File size: 1,139 Bytes
			
			| 861ceca 8dcd40a | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | """
CLI to shard a trained model into 10GiB chunks
"""
import logging
from pathlib import Path
import fire
import transformers
from axolotl.cli import load_cfg, print_axolotl_text_art
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
from axolotl.utils.dict import DictDefault
LOG = logging.getLogger("axolotl.scripts")
def shard(
    *,
    cfg: DictDefault,
    cli_args: TrainerCliArgs,
):
    model, _ = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
    safe_serialization = cfg.save_safetensors is True
    LOG.debug("Re-saving model w/ sharding")
    model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization)
def do_cli(config: Path = Path("examples/"), **kwargs):
    # pylint: disable=duplicate-code
    print_axolotl_text_art()
    parsed_cfg = load_cfg(config, **kwargs)
    parser = transformers.HfArgumentParser((TrainerCliArgs))
    parsed_cli_args, _ = parser.parse_args_into_dataclasses(
        return_remaining_strings=True
    )
    parsed_cli_args.shard = True
    shard(cfg=parsed_cfg, cli_args=parsed_cli_args)
if __name__ == "__main__":
    fire.Fire(do_cli)
 |