File size: 3,673 Bytes
			
			| 5b0bc48 c74f045 7de6a56 5b0bc48 0402d19 6dc68a6 5b0bc48 6dc68a6 5b0bc48 6dc68a6 5b0bc48 0402d19 6dc68a6 5b0bc48 6dc68a6 5b0bc48 6dc68a6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | """
E2E tests for lora llama
"""
import logging
import os
import unittest
from pathlib import Path
from transformers.utils import is_torch_bf16_gpu_available
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from .utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
class TestMistral(unittest.TestCase):
    """
    Test case for Llama models using LoRA
    """
    @with_temp_dir
    def test_lora(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "openaccess-ai-collective/tiny-mistral",
                "flash_attention": True,
                "sequence_len": 1024,
                "load_in_8bit": True,
                "adapter": "lora",
                "lora_r": 32,
                "lora_alpha": 64,
                "lora_dropout": 0.05,
                "lora_target_linear": True,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<unk>",
                    "bos_token": "<s>",
                    "eos_token": "</s>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_torch",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "eval_steps": 10,
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "adapter_model.bin").exists()
    @with_temp_dir
    def test_ft(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "openaccess-ai-collective/tiny-mistral",
                "flash_attention": True,
                "sequence_len": 1024,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<unk>",
                    "bos_token": "<s>",
                    "eos_token": "</s>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_torch",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "eval_steps": 10,
            }
        )
        if is_torch_bf16_gpu_available():
            cfg.bf16 = True
        else:
            cfg.fp16 = True
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "pytorch_model.bin").exists()
 |