Spaces:
Running
on
Zero
Running
on
Zero
# Multi-HMR | |
# Copyright (c) 2024-present NAVER Corp. | |
# CC BY-NC-SA 4.0 license | |
from typing import Callable, Optional | |
import torch | |
from torch import nn | |
from inspect import isfunction | |
from einops import rearrange | |
class AdaptiveLayerNorm1D(torch.nn.Module): | |
""" | |
Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/t_cond_mlp.py#L7 | |
""" | |
def __init__(self, data_dim: int, norm_cond_dim: int): | |
super().__init__() | |
if data_dim <= 0: | |
raise ValueError(f"data_dim must be positive, but got {data_dim}") | |
if norm_cond_dim <= 0: | |
raise ValueError(f"norm_cond_dim must be positive, but got {norm_cond_dim}") | |
self.norm = torch.nn.LayerNorm( | |
data_dim | |
) # TODO: Check if elementwise_affine=True is correct | |
self.linear = torch.nn.Linear(norm_cond_dim, 2 * data_dim) | |
torch.nn.init.zeros_(self.linear.weight) | |
torch.nn.init.zeros_(self.linear.bias) | |
def forward(self, x: torch.Tensor, t: torch.Tensor) -> torch.Tensor: | |
# x: (batch, ..., data_dim) | |
# t: (batch, norm_cond_dim) | |
# return: (batch, data_dim) | |
x = self.norm(x) | |
alpha, beta = self.linear(t).chunk(2, dim=-1) | |
# Add singleton dimensions to alpha and beta | |
if x.dim() > 2: | |
alpha = alpha.view(alpha.shape[0], *([1] * (x.dim() - 2)), alpha.shape[1]) | |
beta = beta.view(beta.shape[0], *([1] * (x.dim() - 2)), beta.shape[1]) | |
return x * (1 + alpha) + beta | |
def normalization_layer(norm: Optional[str], dim: int, norm_cond_dim: int = -1): | |
""" | |
Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/t_cond_mlp.py#L48 | |
""" | |
if norm == "batch": | |
return torch.nn.BatchNorm1d(dim) | |
elif norm == "layer": | |
return torch.nn.LayerNorm(dim) | |
elif norm == "ada": | |
assert norm_cond_dim > 0, f"norm_cond_dim must be positive, got {norm_cond_dim}" | |
return AdaptiveLayerNorm1D(dim, norm_cond_dim) | |
elif norm is None: | |
return torch.nn.Identity() | |
else: | |
raise ValueError(f"Unknown norm: {norm}") | |
def exists(val): | |
"Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L17" | |
return val is not None | |
def default(val, d): | |
"Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L21" | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
class PreNorm(nn.Module): | |
""" | |
Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L27 | |
""" | |
def __init__(self, dim: int, fn: Callable, norm: str = "layer", norm_cond_dim: int = -1): | |
super().__init__() | |
self.norm = normalization_layer(norm, dim, norm_cond_dim) | |
self.fn = fn | |
def forward(self, x: torch.Tensor, *args, **kwargs): | |
if isinstance(self.norm, AdaptiveLayerNorm1D): | |
return self.fn(self.norm(x, *args), **kwargs) | |
else: | |
return self.fn(self.norm(x), **kwargs) | |
class FeedForward(nn.Module): | |
""" | |
Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L40 | |
""" | |
def __init__(self, dim, hidden_dim, dropout=0.0): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(dim, hidden_dim), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.Linear(hidden_dim, dim), | |
nn.Dropout(dropout), | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Attention(nn.Module): | |
""" | |
Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L55 | |
""" | |
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0): | |
super().__init__() | |
inner_dim = dim_head * heads | |
project_out = not (heads == 1 and dim_head == dim) | |
self.heads = heads | |
self.scale = dim_head**-0.5 | |
self.attend = nn.Softmax(dim=-1) | |
self.dropout = nn.Dropout(dropout) | |
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) | |
self.to_out = ( | |
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout)) | |
if project_out | |
else nn.Identity() | |
) | |
def forward(self, x, mask=None): | |
qkv = self.to_qkv(x).chunk(3, dim=-1) | |
# n --> the num query dimension | |
# TODO reshape b into b2 n and mask. | |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv) | |
if mask is not None: | |
q, k, v = [x * mask[:, None, :, None] for x in [q, k, v]] | |
# q, k, v: [13:51:03.400365] torch.Size([22, 1, 256]) | |
#q, k ,vk after reshape: torch.Size([16, 8, 1, 32]) | |
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | |
if mask is not None: | |
dots = dots - (1 - mask)[:, None, None, :] * 10e10 | |
attn = self.attend(dots) | |
if mask is not None: # Just for good measure; this is probably overkill | |
attn = attn * mask[:, None, None, :] | |
attn = self.dropout(attn) | |
out = torch.matmul(attn, v) | |
# out shape :torch.Size([16, 8, 1, 32]) | |
out = rearrange(out, "b h n d -> b n (h d)") | |
return self.to_out(out) | |
class CrossAttention(nn.Module): | |
"Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L89" | |
def __init__(self, dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): | |
super().__init__() | |
inner_dim = dim_head * heads | |
project_out = not (heads == 1 and dim_head == dim) | |
self.heads = heads | |
self.scale = dim_head**-0.5 | |
self.attend = nn.Softmax(dim=-1) | |
self.dropout = nn.Dropout(dropout) | |
context_dim = default(context_dim, dim) | |
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias=False) | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_out = ( | |
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout)) | |
if project_out | |
else nn.Identity() | |
) | |
def forward(self, x, context=None, mask=None): | |
context = default(context, x) | |
k, v = self.to_kv(context).chunk(2, dim=-1) | |
q = self.to_q(x) | |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), [q, k, v]) | |
if mask is not None: | |
q = q * mask[:, None, :, None] | |
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | |
if mask is not None: | |
dots = dots - (1 - mask).float()[:, None, :, None] * 1e6 | |
attn = self.attend(dots) | |
attn = self.dropout(attn) | |
out = torch.matmul(attn, v) | |
if mask is not None: # Just for good measure; this is probably overkill | |
out = out * mask[:, None, :, None] | |
out = rearrange(out, "b h n d -> b n (h d)") | |
return self.to_out(out) | |
class TransformerCrossAttn(nn.Module): | |
"Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L160" | |
def __init__( | |
self, | |
dim: int, | |
depth: int, | |
heads: int, | |
dim_head: int, | |
mlp_dim: int, | |
dropout: float = 0.0, | |
norm: str = "layer", | |
norm_cond_dim: int = -1, | |
context_dim: Optional[int] = None, | |
): | |
super().__init__() | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
sa = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout) | |
ca = CrossAttention( | |
dim, context_dim=context_dim, heads=heads, dim_head=dim_head, dropout=dropout | |
) | |
ff = FeedForward(dim, mlp_dim, dropout=dropout) | |
self.layers.append( | |
nn.ModuleList( | |
[ | |
PreNorm(dim, sa, norm=norm, norm_cond_dim=norm_cond_dim), | |
PreNorm(dim, ca, norm=norm, norm_cond_dim=norm_cond_dim), | |
PreNorm(dim, ff, norm=norm, norm_cond_dim=norm_cond_dim), | |
] | |
) | |
) | |
def forward(self, x: torch.Tensor, *args, context=None, context_list=None, mask=None): | |
if context_list is None: | |
context_list = [context] * len(self.layers) | |
if len(context_list) != len(self.layers): | |
raise ValueError(f"len(context_list) != len(self.layers) ({len(context_list)} != {len(self.layers)})") | |
for i, (self_attn, cross_attn, ff) in enumerate(self.layers): | |
if mask is not None: | |
try: | |
x = x * mask[:, :, None] | |
except: | |
print("see ") | |
import pdb; pdb.set_trace() | |
x = self_attn(x, mask=mask, *args) + x | |
x = cross_attn(x, mask=mask, *args, context=context_list[i]) + x | |
x = ff(x, *args) + x | |
if mask is not None: | |
x = x * mask[:, :, None] | |
return x | |
class DropTokenDropout(nn.Module): | |
"Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L204" | |
def __init__(self, p: float = 0.1): | |
super().__init__() | |
if p < 0 or p > 1: | |
raise ValueError( | |
"dropout probability has to be between 0 and 1, " "but got {}".format(p) | |
) | |
self.p = p | |
def forward(self, x: torch.Tensor): | |
# x: (batch_size, seq_len, dim) | |
if self.training and self.p > 0: | |
zero_mask = torch.full_like(x[0, :, 0], self.p).bernoulli().bool() | |
# TODO: permutation idx for each batch using torch.argsort | |
if zero_mask.any(): | |
x = x[:, ~zero_mask, :] | |
return x | |
class ZeroTokenDropout(nn.Module): | |
"Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L223" | |
def __init__(self, p: float = 0.1): | |
super().__init__() | |
if p < 0 or p > 1: | |
raise ValueError( | |
"dropout probability has to be between 0 and 1, " "but got {}".format(p) | |
) | |
self.p = p | |
def forward(self, x: torch.Tensor): | |
# x: (batch_size, seq_len, dim) | |
if self.training and self.p > 0: | |
zero_mask = torch.full_like(x[:, :, 0], self.p).bernoulli().bool() | |
# Zero-out the masked tokens | |
x[zero_mask, :] = 0 | |
return x | |
class TransformerDecoder(nn.Module): | |
"Code modified from https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L301" | |
def __init__( | |
self, | |
num_tokens: int, | |
token_dim: int, | |
dim: int, | |
depth: int, | |
heads: int, | |
mlp_dim: int, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
emb_dropout: float = 0.0, | |
emb_dropout_type: str = 'drop', | |
norm: str = "layer", | |
norm_cond_dim: int = -1, | |
context_dim: Optional[int] = None, | |
skip_token_embedding: bool = False, | |
): | |
super().__init__() | |
if not skip_token_embedding: | |
self.to_token_embedding = nn.Linear(token_dim, dim) | |
else: | |
self.to_token_embedding = nn.Identity() | |
if token_dim != dim: | |
raise ValueError( | |
f"token_dim ({token_dim}) != dim ({dim}) when skip_token_embedding is True" | |
) | |
self.pos_embedding = nn.Parameter(torch.randn(1, num_tokens, dim)) | |
if emb_dropout_type == "drop": | |
self.dropout = DropTokenDropout(emb_dropout) | |
elif emb_dropout_type == "zero": | |
self.dropout = ZeroTokenDropout(emb_dropout) | |
elif emb_dropout_type == "normal": | |
self.dropout = nn.Dropout(emb_dropout) | |
self.transformer = TransformerCrossAttn( | |
dim, | |
depth, | |
heads, | |
dim_head, | |
mlp_dim, | |
dropout, | |
norm=norm, | |
norm_cond_dim=norm_cond_dim, | |
context_dim=context_dim, | |
) | |
def forward(self, inp: torch.Tensor, *args, context=None, context_list=None, mask=None): | |
x = self.to_token_embedding(inp) | |
b, n, _ = x.shape | |
x = self.dropout(x) | |
#x += self.pos_embedding[:, :n] | |
x += self.pos_embedding[:, 0][:, None, :] # For now, we don't wish to embed a position. We might in future versions though. | |
x = self.transformer(x, *args, context=context, context_list=context_list, mask=mask) | |
return x | |