Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,531 Bytes
c614b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# -*- coding: utf-8 -*-
# @Organization : Alibaba XR-Lab
# @Author : Lingteng Qiu
# @Email : [email protected]
# @Time : 2025-03-03 10:28:35
# @Function : Easy to use PSNR metric
import os
import sys
sys.path.append("./")
import math
import pdb
import cv2
import numpy as np
import skimage
import torch
from PIL import Image
from tqdm import tqdm
from tqlt import utils as tu
def write_json(path, x):
"""write a json file.
Args:
path (str): path to write json file.
x (dict): dict to write.
"""
import json
with open(path, "w") as f:
json.dump(x, f, indent=2)
def img_center_padding(img_np, pad_ratio=0.2, background=1):
ori_w, ori_h = img_np.shape[:2]
w = round((1 + pad_ratio) * ori_w)
h = round((1 + pad_ratio) * ori_h)
if background == 1:
img_pad_np = np.ones((w, h, 3), dtype=img_np.dtype)
else:
img_pad_np = np.zeros((w, h, 3), dtype=img_np.dtype)
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2
img_pad_np[
offset_h : offset_h + img_np.shape[0] :, offset_w : offset_w + img_np.shape[1]
] = img_np
return img_pad_np, offset_w, offset_h
def compute_psnr(src, tar):
psnr = skimage.metrics.peak_signal_noise_ratio(tar, src, data_range=1)
return psnr
def get_parse():
import argparse
parser = argparse.ArgumentParser(description="")
parser.add_argument("-f1", "--folder1", required=True, help="input path")
parser.add_argument("-f2", "--folder2", required=True, help="output path")
parser.add_argument("-m", "--mask", default=None, help="output path")
parser.add_argument("--pre", default="anigs")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--pad", action="store_true")
args = parser.parse_args()
return args
def get_image_paths_current_dir(folder_path):
image_extensions = {
".jpg",
".jpeg",
".png",
".gif",
".bmp",
".tiff",
".webp",
".jfif",
}
return sorted(
[
os.path.join(folder_path, f)
for f in os.listdir(folder_path)
if os.path.splitext(f)[1].lower() in image_extensions
]
)
def psnr_compute(
input_data,
results_data,
mask_data=None,
pad=False,
):
gt_imgs = get_image_paths_current_dir(input_data)
result_imgs = get_image_paths_current_dir(os.path.join(results_data))
if mask_data is not None:
mask_imgs = get_image_paths_current_dir(mask_data)
else:
mask_imgs = None
if "visualization" in result_imgs[-1]:
result_imgs = result_imgs[:-1]
if len(gt_imgs) != len(result_imgs):
return -1
gt_imgs = gt_imgs[::4]
result_imgs = result_imgs[::4]
psnr_mean = []
for mask_i, (gt, result) in tqdm(enumerate(zip(gt_imgs, result_imgs))):
result_img = (cv2.imread(result, cv2.IMREAD_UNCHANGED) / 255.0).astype(
np.float32
)
gt_img = (cv2.imread(gt, cv2.IMREAD_UNCHANGED) / 255.0).astype(np.float32)
if mask_imgs is not None:
mask_img = (
cv2.imread(mask_imgs[mask_i], cv2.IMREAD_UNCHANGED) / 255.0
).astype(np.float32)
mask_img = mask_img[..., -1]
mask_img = np.stack([mask_img] * 3, axis=-1)
mask_img, _, _ = img_center_padding(mask_img, background=0)
if pad:
gt_img, _, _ = img_center_padding(gt_img)
h, w, c = result_img.shape
gt_img = cv2.resize(gt_img, (w, h), interpolation=cv2.INTER_AREA)
if mask_imgs is not None:
mask_img = cv2.resize(mask_img, (w, h), interpolation=cv2.INTER_AREA)
gt_img = gt_img * mask_img + 1 - mask_img
result_img = result_img * mask_img + 1 - mask_img
mask_label = mask_img[..., 0]
psnr_mean += [
compute_psnr(result_img[mask_label > 0.5], gt_img[mask_label > 0.5])
]
else:
psnr_mean += [compute_psnr(result_img, gt_img)]
# Image.fromarray((gt_img * 255).astype(np.uint8)).save("gt.png")
# Image.fromarray((result_img * 255).astype(np.uint8)).save("result.png")
psnr = np.mean(psnr_mean)
return psnr
if __name__ == "__main__":
opt = get_parse()
input_folder = opt.folder1
target_folder = opt.folder2
mask_folder = opt.mask
save_folder = os.path.join(
f"./exps/metrics{opt.pre}", "psnr_results", "anigs_video"
)
os.makedirs(save_folder, exist_ok=True)
input_folders = tu.next_folders(input_folder)
results_dict = dict()
psnr_list = []
for input_folder in input_folders:
item_basename = tu.basename(input_folder)
mask_item_folder = None
input_item_folder = os.path.join(input_folder, "rgb")
target_item_folder = os.path.join(target_folder, item_basename)
if os.path.exists(input_item_folder) and os.path.exists(target_item_folder):
psnr = psnr_compute(
input_item_folder, target_item_folder, mask_item_folder, opt.pad
)
if psnr == -1:
continue
psnr_list.append(psnr)
results_dict[item_basename] = psnr
if opt.debug:
break
print(results_dict)
results_dict["all_mean"] = np.mean(psnr_list)
write_json(os.path.join(save_folder, "PSNR.json"), results_dict)
|