Spaces:
Dorjzodovsuren
/
Running on Zero

File size: 5,832 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import time
import torch
import torch.nn.functional as F
import numpy as np

def get_gaussian_kernel_1d(kernel_size, sigma, device):
    x = torch.arange(kernel_size).float() - (kernel_size // 2)
    g = torch.exp(-((x ** 2) / (2 * sigma ** 2)))
    g /= g.sum()

    kernel_weight = g.view(1, 1, -1).to(device)


    return kernel_weight

def gaussian_filter_1d(data, kernel_size=3, sigma=1.0, weight=None):
    kernel_weight = get_gaussian_kernel_1d(kernel_size, sigma, data.device) if weight is None else weight
    data = F.pad(data, (kernel_size // 2, kernel_size // 2), mode='replicate')
    return F.conv1d(data, kernel_weight)


def exponential_smoothing(x, d_x, alpha=0.5):
    return d_x + alpha * (x - d_x)


class OneEuroFilter:
    # param setting:
    #   realtime v2m: min_cutoff=1.0, beta=1.5
    #   motionshop 2d keypoint: min_cutoff=1.7, beta=0.3
    def __init__(self, min_cutoff=1.0, beta=0.0, sampling_rate=30, d_cutoff=1.0,  device='cuda'):
        self.min_cutoff = min_cutoff
        self.beta = beta
        self.sampling_rate = sampling_rate
        self.x_prev = None
        self.dx_prev = None
        self.d_cutoff = d_cutoff
        self.pi = torch.tensor(torch.pi, device=device)

    def smoothing_factor(self, cutoff):
        
        r = 2 * self.pi * cutoff / self.sampling_rate
        return r/ (1 + r)

    def filter(self, x):
        if self.x_prev is None:
            self.x_prev = x
            self.dx_prev = torch.zeros_like(x)
            return x

        
        a_d = self.smoothing_factor(self.d_cutoff)
        # 计算当前的速度
        dx = (x - self.x_prev) * self.sampling_rate

        dx_hat = exponential_smoothing(dx, self.dx_prev, a_d)

        cutoff = self.min_cutoff + self.beta * torch.abs(dx_hat)
        a = self.smoothing_factor(cutoff)

        x_hat = exponential_smoothing(x, self.x_prev, a)

        self.x_prev = x_hat
        self.dx_prev = dx_hat

        return x_hat


class Filter():
    filter_factory = {
        'gaussian': get_gaussian_kernel_1d,
    }

    def __init__(self, target_data, filter_type, filter_args):
        self.target_data = target_data
        self.filter = self.filter_factory[filter_type]
        self.filter_args = filter_args

    def process(self, network_outputs):
        filter_data = []
        for human in network_outputs:
            filter_data.append(human[self.target_data])
        filter_data = torch.stack(filter_data, dim=0)
        
        filter_data = self.filter(filter_data, **self.filter_args)
        
        for i, human in enumerate(network_outputs):
            human[self.target_data] = filter_data[i]


if __name__ == '__main__':
    import argparse
    import matplotlib.pyplot as plt
    import numpy as np
    from rot6d import rotation_6d_to_axis_angle, axis_angle_to_rotation_6d

    from humans import get_smplx_joint_names
    parser = argparse.ArgumentParser()
    parser.add_argument('--data_path', type=str)
    parser.add_argument('--save_path', type=str)
    parser.add_argument('--name', type=str)
    args = parser.parse_args()

    fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))
    data_types = ['rotvec']#, 'j3d']
    observe_keypoints = ['pelvis', 'head', 'left_wrist', 'left_knee']
    joint_names = get_smplx_joint_names()

    
    data = np.load(f'{args.data_path}/shape_{args.name}.npy')
    fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))
    for i in range(2):
        for j in range(2):
            x = data[:, i*4 + j*2]
            print(x.shape)
            axs[i, j].plot(x)

            axs[i, j].set_title(f'{4 * i + 2 * j}')
    axs[i, j].plot(np.load(f'{args.data_path}/dist_{args.name}.npy'))
    plt.tight_layout()
    plt.savefig(f'{args.save_path}/shape_{args.name}.jpg')
    # for data_type in data_types:
    #     data = np.load(f'{args.data_path}/{data_type}_{args.name}.npy')
    #     fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))
    #     for i in range(2):
    #         for j in range(2):
    #             # todo: something wrong here
    #             filter = OneEuroFilter(min_cutoff=1, beta=0.01, sampling_rate=30, device='cuda:0')
    #             x = data[:, joint_names.index(observe_keypoints[i*2+j])] #(F, 3)
    #             print(x.shape)

    #             x = axis_angle_to_rotation_6d(torch.tensor(x, device='cuda:0'))
                
    #             x_filtered = x.clone()
    #             start = time.time()
    #             for k in range(x.shape[0]):
    #                 x_filtered[k] = filter.filter(x[k])

    #             print(x_filtered.shape[0]/(time.time()-start))
    #             # x_filtered = x.clone()
    #             # a = 0.5
    #             # for k in range(1, x.shape[0]):
    #             #     x_filtered[k] = (1 - a) * x_filtered[k-1] + a * x[k]
    #             #theta = np.linalg.norm(x, axis=-1)
    #             #x = x / theta[..., None]
                
                
    #             # f, n = x.shape
    #             # x_filtered = gaussian_filter_1d(x.permute(1, 0).view(n, 1, -1), 11, 11)
    #             # x_filtered = x_filtered.view(n, -1).permute(1, 0)
                
    #             x = rotation_6d_to_axis_angle(x).cpu().numpy()
    #             x_filtered  = rotation_6d_to_axis_angle(x_filtered).cpu().numpy()
    #             axs[i, j].plot(x[..., 0])
    #             axs[i, j].plot(x[..., 1])
    #             axs[i, j].plot(x[..., 2])

    #             axs[i, j].plot(x_filtered[..., 0])
    #             axs[i, j].plot(x_filtered[..., 1])
    #             axs[i, j].plot(x_filtered[..., 2])
    #             #axs[i, j].plot(theta)

    #             axs[i, j].set_title(f'{observe_keypoints[i*2 + j]}')
    #     plt.tight_layout()
    #     plt.savefig(f'{args.save_path}/{data_type}_{args.name}.jpg')