Spaces:
Dorjzodovsuren
/
Running on Zero

File size: 6,226 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# -*- coding: utf-8 -*-
# @Organization  : Alibaba XR-Lab
# @Author        : Lingteng Qiu
# @Email         : [email protected]
# @Time          : 2024-08-30 20:50:27
# @Function      : The class defines bbox, base-seg module

import copy

import cv2
import numpy as np
import torch


class BaseModel(object):
    """
    Simple BaseModel
    """

    def cuda(self):
        self.model.cuda()
        return self

    def cpu(self):
        self.model.cpu()
        return self

    def float(self):
        self.model.float()
        return self

    def to(self, device):
        self.model.to(device)
        return self

    def eval(self):
        self.model.eval()

        return self

    def train(self):
        self.model.train()
        return self

    def __call__(self, x):
        raise NotImplementedError

    def __repr__(self):

        return f"model: \n{self.model}"


def get_dtype_string(arr):
    if arr.dtype == np.uint8:
        return "uint8"
    elif arr.dtype == np.float32:
        return "float32"
    elif arr.dtype == np.float64:
        return "float"
    else:
        return "unknow"


class BaseSeg(BaseModel):
    def __init__(self):
        pass


class Bbox:
    def __init__(self, box, mode="whwh"):

        assert len(box) == 4
        assert mode in ["whwh", "xywh"]
        self.box = box
        self.mode = mode

    def to_xywh(self):

        if self.mode == "whwh":

            l, t, r, b = self.box

            center_x = (l + r) / 2
            center_y = (t + b) / 2
            width = r - l
            height = b - t
            return Bbox([center_x, center_y, width, height], mode="xywh")
        else:
            return self

    def to_whwh(self):

        if self.mode == "whwh":
            return self
        else:

            cx, cy, w, h = self.box
            l = cx - w // 2
            t = cy - h // 2
            r = cx + w - (w // 2)
            b = cy + h - (h // 2)

            return Bbox([l, t, r, b], mode="whwh")

    def area(self):

        box = self.to_xywh()
        _, __, w, h = box.box

        return w * h

    def get_box(self):
        return list(map(int, self.box))

    def scale(self, scale, width, height):
        new_box = self.to_xywh()
        cx, cy, w, h = new_box.get_box()
        w = w * scale
        h = h * scale

        l = cx - w // 2
        t = cy - h // 2
        r = cx + w - (w // 2)
        b = cy + h - (h // 2)

        l = int(max(l, 0))
        t = int(max(t, 0))
        r = int(min(r, width))
        b = int(min(b, height))

        return Bbox([l, t, r, b], mode="whwh")

    def __repr__(self):
        box = self.to_whwh()
        l, t, r, b = box.box

        return f"BBox(left={l}, top={t}, right={r}, bottom={b})"


class Image:
    """TODO need to debug"""

    TYPE_ORDER = ["uint8", "float32", "float"]
    ORDER = ["RGB", "BGR"]
    MODE = ["numpy"]

    def __init__(self, input, order="RGB", type_mode="uint8"):
        """Only support 3 Channel Image"""
        if isinstance(input, str):
            self.data = self.read_image(input, type_mode, order)
        else:
            self.data = self.get_image(input, type_mode, order)

        self.order = order
        self.type_mode = type_mode

    def get_image(self, input, type_mode, order):
        if isinstance(input, Image):
            return input.to_numpy(type_mode, order)
        elif isinstance(input, np.ndarray):
            self.data = input
            self.order = "RGB"  # default
            self.type_mode = get_dtype_string(input)

            return self.to_numpy(type_mode, order)
        else:
            raise NotImplementedError

    def to_numpy(self, type_mode="uint8", order="RGB"):

        data = copy.deepcopy(self.data)

        if not order == self.order:
            return data[..., ::-1]  # only support RGB -> BGR or BGR -> RGB

        if self.type_mode == type_mode:
            return data
        else:
            if self.type_mode == "float32":
                return (self.data / 255.0).astype(np.float32)
            elif self.type_mode == "float":
                return (self.data / 255.0).astype(np.float64)

    def to_tensor(self, order):
        data = self.to_numpy(type_mode="float32", order=order)
        return torch.from_numpy(data)

    def read_image(
        self,
        path,
        mode,
        order,
    ):
        """read an image file into various formats and color mode.

        Args:
            path (str): path to the image file.
            mode (Literal["float", "uint8", "pil", "torch", "tensor"], optional): returned image format. Defaults to "float".
                float: float32 numpy array, range [0, 1];
                uint8: uint8 numpy array, range [0, 255];
                pil: PIL image;
                torch/tensor: float32 torch tensor, range [0, 1];
            order (Literal["RGB", "RGBA", "BGR", "BGRA"], optional): channel order. Defaults to "RGB".

        Note:
            By default this function will convert RGBA image to white-background RGB image. Use ``order="RGBA"`` to keep the alpha channel.

        Returns:
            Union[np.ndarray, PIL.Image, torch.Tensor]: the image array.
        """

        if mode == "pil":
            return Image.open(path).convert(order)

        img = cv2.imread(path, cv2.IMREAD_UNCHANGED)

        # cvtColor
        if len(img.shape) == 3:  # ignore if gray scale
            if order in ["RGB", "RGBA"]:
                if img.shape[-1] == 4:
                    img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA)
                elif img.shape[-1] == 3:
                    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

            # mix background
            if img.shape[-1] == 4 and "A" not in order:
                img = img.astype(np.float32) / 255
                img = img[..., :3] * img[..., 3:] + (1 - img[..., 3:])

        # mode
        if mode == "uint8":
            if img.dtype != np.uint8:
                img = (img * 255).astype(np.uint8)
        elif mode == "float":
            if img.dtype == np.uint8:
                img = img.astype(np.float32) / 255
        else:
            raise ValueError(f"Unknown read_image mode {mode}")

        return img