Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,226 Bytes
c614b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# -*- coding: utf-8 -*-
# @Organization : Alibaba XR-Lab
# @Author : Lingteng Qiu
# @Email : [email protected]
# @Time : 2024-08-30 20:50:27
# @Function : The class defines bbox, base-seg module
import copy
import cv2
import numpy as np
import torch
class BaseModel(object):
"""
Simple BaseModel
"""
def cuda(self):
self.model.cuda()
return self
def cpu(self):
self.model.cpu()
return self
def float(self):
self.model.float()
return self
def to(self, device):
self.model.to(device)
return self
def eval(self):
self.model.eval()
return self
def train(self):
self.model.train()
return self
def __call__(self, x):
raise NotImplementedError
def __repr__(self):
return f"model: \n{self.model}"
def get_dtype_string(arr):
if arr.dtype == np.uint8:
return "uint8"
elif arr.dtype == np.float32:
return "float32"
elif arr.dtype == np.float64:
return "float"
else:
return "unknow"
class BaseSeg(BaseModel):
def __init__(self):
pass
class Bbox:
def __init__(self, box, mode="whwh"):
assert len(box) == 4
assert mode in ["whwh", "xywh"]
self.box = box
self.mode = mode
def to_xywh(self):
if self.mode == "whwh":
l, t, r, b = self.box
center_x = (l + r) / 2
center_y = (t + b) / 2
width = r - l
height = b - t
return Bbox([center_x, center_y, width, height], mode="xywh")
else:
return self
def to_whwh(self):
if self.mode == "whwh":
return self
else:
cx, cy, w, h = self.box
l = cx - w // 2
t = cy - h // 2
r = cx + w - (w // 2)
b = cy + h - (h // 2)
return Bbox([l, t, r, b], mode="whwh")
def area(self):
box = self.to_xywh()
_, __, w, h = box.box
return w * h
def get_box(self):
return list(map(int, self.box))
def scale(self, scale, width, height):
new_box = self.to_xywh()
cx, cy, w, h = new_box.get_box()
w = w * scale
h = h * scale
l = cx - w // 2
t = cy - h // 2
r = cx + w - (w // 2)
b = cy + h - (h // 2)
l = int(max(l, 0))
t = int(max(t, 0))
r = int(min(r, width))
b = int(min(b, height))
return Bbox([l, t, r, b], mode="whwh")
def __repr__(self):
box = self.to_whwh()
l, t, r, b = box.box
return f"BBox(left={l}, top={t}, right={r}, bottom={b})"
class Image:
"""TODO need to debug"""
TYPE_ORDER = ["uint8", "float32", "float"]
ORDER = ["RGB", "BGR"]
MODE = ["numpy"]
def __init__(self, input, order="RGB", type_mode="uint8"):
"""Only support 3 Channel Image"""
if isinstance(input, str):
self.data = self.read_image(input, type_mode, order)
else:
self.data = self.get_image(input, type_mode, order)
self.order = order
self.type_mode = type_mode
def get_image(self, input, type_mode, order):
if isinstance(input, Image):
return input.to_numpy(type_mode, order)
elif isinstance(input, np.ndarray):
self.data = input
self.order = "RGB" # default
self.type_mode = get_dtype_string(input)
return self.to_numpy(type_mode, order)
else:
raise NotImplementedError
def to_numpy(self, type_mode="uint8", order="RGB"):
data = copy.deepcopy(self.data)
if not order == self.order:
return data[..., ::-1] # only support RGB -> BGR or BGR -> RGB
if self.type_mode == type_mode:
return data
else:
if self.type_mode == "float32":
return (self.data / 255.0).astype(np.float32)
elif self.type_mode == "float":
return (self.data / 255.0).astype(np.float64)
def to_tensor(self, order):
data = self.to_numpy(type_mode="float32", order=order)
return torch.from_numpy(data)
def read_image(
self,
path,
mode,
order,
):
"""read an image file into various formats and color mode.
Args:
path (str): path to the image file.
mode (Literal["float", "uint8", "pil", "torch", "tensor"], optional): returned image format. Defaults to "float".
float: float32 numpy array, range [0, 1];
uint8: uint8 numpy array, range [0, 255];
pil: PIL image;
torch/tensor: float32 torch tensor, range [0, 1];
order (Literal["RGB", "RGBA", "BGR", "BGRA"], optional): channel order. Defaults to "RGB".
Note:
By default this function will convert RGBA image to white-background RGB image. Use ``order="RGBA"`` to keep the alpha channel.
Returns:
Union[np.ndarray, PIL.Image, torch.Tensor]: the image array.
"""
if mode == "pil":
return Image.open(path).convert(order)
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
# cvtColor
if len(img.shape) == 3: # ignore if gray scale
if order in ["RGB", "RGBA"]:
if img.shape[-1] == 4:
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA)
elif img.shape[-1] == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# mix background
if img.shape[-1] == 4 and "A" not in order:
img = img.astype(np.float32) / 255
img = img[..., :3] * img[..., 3:] + (1 - img[..., 3:])
# mode
if mode == "uint8":
if img.dtype != np.uint8:
img = (img * 255).astype(np.uint8)
elif mode == "float":
if img.dtype == np.uint8:
img = img.astype(np.float32) / 255
else:
raise ValueError(f"Unknown read_image mode {mode}")
return img
|