Update app.py
Browse files
app.py
CHANGED
@@ -109,32 +109,36 @@ def load_leaderboard_data(csv_file_path):
|
|
109 |
return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS + ADDITIONAL_COLS)
|
110 |
|
111 |
# Update the leaderboard table based on the search query and parameter range filters
|
112 |
-
def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list, w10_range: tuple, additional_cols: list) -> pd.DataFrame:
|
113 |
filtered_df = df.copy()
|
|
|
|
|
114 |
if param_ranges:
|
115 |
-
|
116 |
for param_range in param_ranges:
|
117 |
if param_range == '~2':
|
118 |
-
|
119 |
elif param_range == '~4':
|
120 |
-
|
121 |
elif param_range == '~8':
|
122 |
-
|
123 |
elif param_range == '~13':
|
124 |
-
|
125 |
elif param_range == '~20':
|
126 |
-
|
127 |
elif param_range == '~34':
|
128 |
-
|
129 |
elif param_range == '~50':
|
130 |
-
|
131 |
elif param_range == '~70+':
|
132 |
-
|
133 |
elif param_range == 'Closed':
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
138 |
|
139 |
if query:
|
140 |
filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False, na=False)]
|
@@ -179,15 +183,22 @@ with GraInter:
|
|
179 |
with gr.Row():
|
180 |
search_bar = gr.Textbox(placeholder=" π Search for a model...", show_label=False, elem_id="search-bar")
|
181 |
with gr.Row():
|
182 |
-
with gr.Column(scale=
|
183 |
filter_columns_size = gr.CheckboxGroup(
|
184 |
label="Model sizes (in billions of parameters)",
|
185 |
-
choices=['~2', '~4', '~8', '~13', '~20', '~34', '~50', '~70+', 'Closed'
|
186 |
value=[],
|
187 |
interactive=True,
|
188 |
elem_id="filter-columns-size",
|
189 |
)
|
190 |
-
with gr.Column(scale=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
w10_range = RangeSlider(minimum=0, maximum=10, value=(0, 10), step=0.1, label="W/10 Range")
|
192 |
with gr.Row():
|
193 |
additional_columns = gr.CheckboxGroup(
|
@@ -325,42 +336,56 @@ with GraInter:
|
|
325 |
**NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
|
326 |
""")
|
327 |
|
328 |
-
def update_all_tables(query, param_ranges, w10_range, additional_cols):
|
329 |
-
ugi_table = update_table(leaderboard_df, query, param_ranges, UGI_COLS, w10_range, additional_cols)
|
330 |
|
331 |
ws_df = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
332 |
-
ws_table = update_table(ws_df, query, param_ranges, WRITING_STYLE_COLS, w10_range, additional_cols)
|
333 |
|
334 |
arp_df = leaderboard_df.sort_values(by='Score π', ascending=False)
|
335 |
arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
336 |
arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
337 |
|
338 |
-
arp_table = update_table(arp_df, query, param_ranges, ANIME_RATING_COLS, w10_range, additional_cols)
|
339 |
-
arp_na_table = update_table(arp_df_na, query, param_ranges, ANIME_RATING_COLS, w10_range, additional_cols).fillna('NA')
|
340 |
|
341 |
return ugi_table, ws_table, arp_table, arp_na_table
|
342 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
search_bar.change(
|
344 |
fn=update_all_tables,
|
345 |
-
inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
|
346 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
347 |
)
|
348 |
|
349 |
filter_columns_size.change(
|
350 |
fn=update_all_tables,
|
351 |
-
inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
|
352 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
353 |
)
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
w10_range.change(
|
356 |
fn=update_all_tables,
|
357 |
-
inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
|
358 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
359 |
)
|
360 |
-
|
361 |
additional_columns.change(
|
362 |
fn=update_all_tables,
|
363 |
-
inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
|
364 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
365 |
)
|
366 |
|
|
|
109 |
return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS + ADDITIONAL_COLS)
|
110 |
|
111 |
# Update the leaderboard table based on the search query and parameter range filters
|
112 |
+
def update_table(df: pd.DataFrame, query: str, param_ranges: list, is_foundation: bool, columns: list, w10_range: tuple, additional_cols: list) -> pd.DataFrame:
|
113 |
filtered_df = df.copy()
|
114 |
+
|
115 |
+
# Apply model size filter
|
116 |
if param_ranges:
|
117 |
+
size_mask = pd.Series(False, index=filtered_df.index)
|
118 |
for param_range in param_ranges:
|
119 |
if param_range == '~2':
|
120 |
+
size_mask |= (filtered_df['Total Params'] < 2.5)
|
121 |
elif param_range == '~4':
|
122 |
+
size_mask |= ((filtered_df['Total Params'] >= 2.5) & (filtered_df['Total Params'] < 6))
|
123 |
elif param_range == '~8':
|
124 |
+
size_mask |= ((filtered_df['Total Params'] >= 6) & (filtered_df['Total Params'] < 9.5))
|
125 |
elif param_range == '~13':
|
126 |
+
size_mask |= ((filtered_df['Total Params'] >= 9.5) & (filtered_df['Total Params'] < 16))
|
127 |
elif param_range == '~20':
|
128 |
+
size_mask |= ((filtered_df['Total Params'] >= 16) & (filtered_df['Total Params'] < 28))
|
129 |
elif param_range == '~34':
|
130 |
+
size_mask |= ((filtered_df['Total Params'] >= 28) & (filtered_df['Total Params'] < 40))
|
131 |
elif param_range == '~50':
|
132 |
+
size_mask |= ((filtered_df['Total Params'] >= 40) & (filtered_df['Total Params'] < 65))
|
133 |
elif param_range == '~70+':
|
134 |
+
size_mask |= (filtered_df['Total Params'] >= 65)
|
135 |
elif param_range == 'Closed':
|
136 |
+
size_mask |= filtered_df['Total Params'].isna()
|
137 |
+
filtered_df = filtered_df[size_mask]
|
138 |
+
|
139 |
+
# Apply foundation model filter
|
140 |
+
if is_foundation:
|
141 |
+
filtered_df = filtered_df[filtered_df['Foundation'] == 1]
|
142 |
|
143 |
if query:
|
144 |
filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False, na=False)]
|
|
|
183 |
with gr.Row():
|
184 |
search_bar = gr.Textbox(placeholder=" π Search for a model...", show_label=False, elem_id="search-bar")
|
185 |
with gr.Row():
|
186 |
+
with gr.Column(scale=7):
|
187 |
filter_columns_size = gr.CheckboxGroup(
|
188 |
label="Model sizes (in billions of parameters)",
|
189 |
+
choices=['~2', '~4', '~8', '~13', '~20', '~34', '~50', '~70+', 'Closed'],
|
190 |
value=[],
|
191 |
interactive=True,
|
192 |
elem_id="filter-columns-size",
|
193 |
)
|
194 |
+
with gr.Column(min_width=200, scale=0):
|
195 |
+
model_type = gr.Checkbox(
|
196 |
+
label="Foundation Models Only",
|
197 |
+
value=False,
|
198 |
+
interactive=True,
|
199 |
+
elem_id="model-type",
|
200 |
+
)
|
201 |
+
with gr.Column(scale=3):
|
202 |
w10_range = RangeSlider(minimum=0, maximum=10, value=(0, 10), step=0.1, label="W/10 Range")
|
203 |
with gr.Row():
|
204 |
additional_columns = gr.CheckboxGroup(
|
|
|
336 |
**NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
|
337 |
""")
|
338 |
|
339 |
+
def update_all_tables(query, param_ranges, is_foundation, w10_range, additional_cols):
|
340 |
+
ugi_table = update_table(leaderboard_df, query, param_ranges, is_foundation, UGI_COLS, w10_range, additional_cols)
|
341 |
|
342 |
ws_df = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
343 |
+
ws_table = update_table(ws_df, query, param_ranges, is_foundation, WRITING_STYLE_COLS, w10_range, additional_cols)
|
344 |
|
345 |
arp_df = leaderboard_df.sort_values(by='Score π', ascending=False)
|
346 |
arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
347 |
arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
348 |
|
349 |
+
arp_table = update_table(arp_df, query, param_ranges, is_foundation, ANIME_RATING_COLS, w10_range, additional_cols)
|
350 |
+
arp_na_table = update_table(arp_df_na, query, param_ranges, is_foundation, ANIME_RATING_COLS, w10_range, additional_cols).fillna('NA')
|
351 |
|
352 |
return ugi_table, ws_table, arp_table, arp_na_table
|
353 |
|
354 |
+
# Update the event handlers
|
355 |
+
for component in [search_bar, filter_columns_size, model_type, w10_range, additional_columns]:
|
356 |
+
component.change(
|
357 |
+
fn=update_all_tables,
|
358 |
+
inputs=[search_bar, filter_columns_size, model_type, w10_range, additional_columns],
|
359 |
+
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
360 |
+
)
|
361 |
+
|
362 |
search_bar.change(
|
363 |
fn=update_all_tables,
|
364 |
+
inputs=[search_bar, filter_columns_size, model_type, w10_range, additional_columns],
|
365 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
366 |
)
|
367 |
|
368 |
filter_columns_size.change(
|
369 |
fn=update_all_tables,
|
370 |
+
inputs=[search_bar, filter_columns_size, model_type, w10_range, additional_columns],
|
371 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
372 |
)
|
373 |
+
|
374 |
+
model_type.change(
|
375 |
+
fn=update_all_tables,
|
376 |
+
inputs=[search_bar, filter_columns_size, model_type, w10_range, additional_columns],
|
377 |
+
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
378 |
+
)
|
379 |
+
|
380 |
w10_range.change(
|
381 |
fn=update_all_tables,
|
382 |
+
inputs=[search_bar, filter_columns_size, model_type, w10_range, additional_columns],
|
383 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
384 |
)
|
385 |
+
|
386 |
additional_columns.change(
|
387 |
fn=update_all_tables,
|
388 |
+
inputs=[search_bar, filter_columns_size, model_type, w10_range, additional_columns],
|
389 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
390 |
)
|
391 |
|