Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,32 @@
|
|
1 |
-
from
|
2 |
-
import os
|
3 |
import base64
|
4 |
-
import
|
5 |
-
|
6 |
-
class LoRAInferenceWrapper:
|
7 |
-
def __init__(self, model_id, token):
|
8 |
-
# Initialize the InferenceClient
|
9 |
-
self.client = InferenceClient(model_id, token=token)
|
10 |
-
|
11 |
-
def load_lora_weights(self):
|
12 |
-
# Define the path to the LoRA model
|
13 |
-
lora_model_path = "./lora.model.pth" # Update to the actual file name
|
14 |
-
|
15 |
-
# Check if the file exists at the given path
|
16 |
-
if os.path.exists(lora_model_path):
|
17 |
-
print(f"Found LoRA model at: {lora_model_path}")
|
18 |
-
with open(lora_model_path, 'rb') as f:
|
19 |
-
return f.read() # Load the file content
|
20 |
-
else:
|
21 |
-
raise FileNotFoundError(f"LoRA model not found at path: {lora_model_path}")
|
22 |
-
|
23 |
-
def preprocess_lora_weights(self, lora_weights):
|
24 |
-
# Preprocess the LoRA weights (e.g., Base64 encoding for JSON compatibility)
|
25 |
-
return base64.b64encode(lora_weights).decode("utf-8")
|
26 |
-
|
27 |
-
def generate_with_lora(self, prompt):
|
28 |
-
# Load and preprocess the LoRA weights
|
29 |
-
lora_weights = self.load_lora_weights()
|
30 |
-
processed_lora = self.preprocess_lora_weights(lora_weights)
|
31 |
-
|
32 |
-
# Combine the prompt and LoRA data as a single input
|
33 |
-
extended_prompt = json.dumps({
|
34 |
-
"prompt": prompt,
|
35 |
-
"lora": processed_lora
|
36 |
-
})
|
37 |
-
|
38 |
-
# Generate the output using the InferenceClient
|
39 |
-
result = self.client.text_to_image(prompt=extended_prompt)
|
40 |
-
return result
|
41 |
-
|
42 |
-
# Example usage
|
43 |
-
model_id = "stabilityai/stable-diffusion-3.5-large"
|
44 |
-
token = "hf_YOUR_HF_API_TOKEN" # Replace with your Hugging Face token
|
45 |
-
|
46 |
-
# Initialize the wrapper
|
47 |
-
lora_client = LoRAInferenceWrapper(model_id, token)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
|
|
2 |
import base64
|
3 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
app = FastAPI()
|
6 |
+
|
7 |
+
# Load LoRA weights on startup
|
8 |
+
lora_weights = None
|
9 |
+
|
10 |
+
@app.on_event("startup")
|
11 |
+
def load_lora_weights():
|
12 |
+
global lora_weights
|
13 |
+
lora_path = "./lora_file.pth"
|
14 |
+
if os.path.exists(lora_path):
|
15 |
+
with open(lora_path, "rb") as f:
|
16 |
+
# Base64 encode the LoRA weights for easy JSON transmission
|
17 |
+
lora_weights = base64.b64encode(f.read()).decode("utf-8")
|
18 |
+
print("LoRA weights loaded and preprocessed successfully.")
|
19 |
+
else:
|
20 |
+
raise HTTPException(status_code=500, detail="LoRA file not found.")
|
21 |
+
|
22 |
+
@app.post("/modify-prompt")
|
23 |
+
async def modify_prompt(prompt: str):
|
24 |
+
global lora_weights
|
25 |
+
if lora_weights is None:
|
26 |
+
raise HTTPException(status_code=500, detail="LoRA weights not loaded.")
|
27 |
+
# Combine prompt with preprocessed LoRA data
|
28 |
+
extended_prompt = {
|
29 |
+
"prompt": prompt,
|
30 |
+
"lora": lora_weights
|
31 |
+
}
|
32 |
+
return extended_prompt
|