DonImages commited on
Commit
37f9623
·
verified ·
1 Parent(s): b5ade8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -53
app.py CHANGED
@@ -1,55 +1,32 @@
1
- from huggingface_hub import InferenceClient
2
- import os
3
  import base64
4
- import json
5
-
6
- class LoRAInferenceWrapper:
7
- def __init__(self, model_id, token):
8
- # Initialize the InferenceClient
9
- self.client = InferenceClient(model_id, token=token)
10
-
11
- def load_lora_weights(self):
12
- # Define the path to the LoRA model
13
- lora_model_path = "./lora.model.pth" # Update to the actual file name
14
-
15
- # Check if the file exists at the given path
16
- if os.path.exists(lora_model_path):
17
- print(f"Found LoRA model at: {lora_model_path}")
18
- with open(lora_model_path, 'rb') as f:
19
- return f.read() # Load the file content
20
- else:
21
- raise FileNotFoundError(f"LoRA model not found at path: {lora_model_path}")
22
-
23
- def preprocess_lora_weights(self, lora_weights):
24
- # Preprocess the LoRA weights (e.g., Base64 encoding for JSON compatibility)
25
- return base64.b64encode(lora_weights).decode("utf-8")
26
-
27
- def generate_with_lora(self, prompt):
28
- # Load and preprocess the LoRA weights
29
- lora_weights = self.load_lora_weights()
30
- processed_lora = self.preprocess_lora_weights(lora_weights)
31
-
32
- # Combine the prompt and LoRA data as a single input
33
- extended_prompt = json.dumps({
34
- "prompt": prompt,
35
- "lora": processed_lora
36
- })
37
-
38
- # Generate the output using the InferenceClient
39
- result = self.client.text_to_image(prompt=extended_prompt)
40
- return result
41
-
42
- # Example usage
43
- model_id = "stabilityai/stable-diffusion-3.5-large"
44
- token = "hf_YOUR_HF_API_TOKEN" # Replace with your Hugging Face token
45
-
46
- # Initialize the wrapper
47
- lora_client = LoRAInferenceWrapper(model_id, token)
48
 
49
- # Generate an image with the LoRA file applied
50
- prompt = "The same woman, smiling at the beach."
51
- try:
52
- result = lora_client.generate_with_lora(prompt)
53
- print("Generated image:", result)
54
- except Exception as e:
55
- print("Error:", str(e))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
 
2
  import base64
3
+ import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ app = FastAPI()
6
+
7
+ # Load LoRA weights on startup
8
+ lora_weights = None
9
+
10
+ @app.on_event("startup")
11
+ def load_lora_weights():
12
+ global lora_weights
13
+ lora_path = "./lora_file.pth"
14
+ if os.path.exists(lora_path):
15
+ with open(lora_path, "rb") as f:
16
+ # Base64 encode the LoRA weights for easy JSON transmission
17
+ lora_weights = base64.b64encode(f.read()).decode("utf-8")
18
+ print("LoRA weights loaded and preprocessed successfully.")
19
+ else:
20
+ raise HTTPException(status_code=500, detail="LoRA file not found.")
21
+
22
+ @app.post("/modify-prompt")
23
+ async def modify_prompt(prompt: str):
24
+ global lora_weights
25
+ if lora_weights is None:
26
+ raise HTTPException(status_code=500, detail="LoRA weights not loaded.")
27
+ # Combine prompt with preprocessed LoRA data
28
+ extended_prompt = {
29
+ "prompt": prompt,
30
+ "lora": lora_weights
31
+ }
32
+ return extended_prompt