import gradio as gr import torch import os import random import numpy as np from diffusers import DiffusionPipeline from safetensors.torch import load_file from spaces import GPU # Remove if not in HF Space # 1. Model and LoRA Loading (Before Gradio) device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 token = os.getenv("HF_TOKEN") model_repo_id = "stabilityai/stable-diffusion-3.5-large" try: pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, use_auth_token=token) # No need to check for token existence, diffusers handles this pipe = pipe.to(device) lora_filename = "lora_trained_model.safetensors" # EXACT filename of your LoRA lora_path = os.path.join("./", lora_filename) if os.path.exists(lora_path): lora_weights = load_file(lora_path) text_encoder = pipe.text_encoder text_encoder.load_state_dict(lora_weights, strict=False) print(f"LoRA loaded successfully from: {lora_path}") else: print(f"Error: LoRA file not found at: {lora_path}") exit() # Stop if LoRA is not found print("Stable Diffusion model and LoRA loaded successfully!") except Exception as e: print(f"Error loading model or LoRA: {e}") exit() MAX_SEED = 99999999999 MAX_IMAGE_SIZE = 1024 @GPU(duration=65) # Only if in HF Space def infer( prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=40, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) # Generate a new seed if randomize_seed is True generator = torch.Generator(device=device).manual_seed(seed) # Ensure the generator is on the correct device try: image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed # Don't return seed back to the UI except Exception as e: print(f"Error during image generation: {e}") # Print error for debugging return f"Error: {e}", seed # Return error to Gradio interface examples = [ "A capybara wearing a suit holding a sign that reads Hello World", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large)") gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3-5) about the Stable Diffusion 3.5 series. Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), or [download model](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) to run locally with ComfyUI or diffusers.") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=7.5, step=0.1, value=4.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=40, ) gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()