from diffusers import StableDiffusionPipeline import torch import os from huggingface_hub import login # Retrieve the token from the environment variable token = os.getenv("HF_TOKEN") # Hugging Face token from the secret if token: login(token=token) # Log in with the retrieved token else: raise ValueError("Hugging Face token not found. Please set it as a repository secret in the Space settings.") # Load the Stable Diffusion 3.5 model model_id = "stabilityai/stable-diffusion-3.5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.to("cuda") # Define the path to the LoRA model (since it's in the main directory) lora_model_path = "lora_model.pth" # Path to the uploaded LoRA model # Load the LoRA model weights into the pipeline pipe.load_lora_model(lora_model_path) # Integrate the LoRA weights # Function to generate an image from a text prompt def generate_image(prompt): image = pipe(prompt).images[0] return image import gradio as gr iface = gr.Interface(fn=generate_image, inputs="text", outputs="image") iface.launch()