Update app.py
Browse files
app.py
CHANGED
|
@@ -24,10 +24,12 @@ lora_model_path = "./lora_model.pth" # Assuming the file is saved locally
|
|
| 24 |
|
| 25 |
# Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
|
| 26 |
def load_lora_model(pipe, lora_model_path):
|
|
|
|
|
|
|
|
|
|
| 27 |
# When loading the LoRA weights
|
| 28 |
lora_weights = torch.load(lora_model_path, map_location=device, weights_only=True)
|
| 29 |
|
| 30 |
-
|
| 31 |
# Print available attributes of the model to check access to `unet` (optional)
|
| 32 |
print(dir(pipe)) # This will list all attributes and methods of the `pipe` object
|
| 33 |
|
|
|
|
| 24 |
|
| 25 |
# Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
|
| 26 |
def load_lora_model(pipe, lora_model_path):
|
| 27 |
+
# Set device to 'cuda' if available, otherwise 'cpu'
|
| 28 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 29 |
+
|
| 30 |
# When loading the LoRA weights
|
| 31 |
lora_weights = torch.load(lora_model_path, map_location=device, weights_only=True)
|
| 32 |
|
|
|
|
| 33 |
# Print available attributes of the model to check access to `unet` (optional)
|
| 34 |
print(dir(pipe)) # This will list all attributes and methods of the `pipe` object
|
| 35 |
|