Rename appCODE.py to app.py
Browse files- appCODE.py → app.py +8 -12
appCODE.py → app.py
RENAMED
@@ -24,22 +24,21 @@ pipeline = StableDiffusion3Pipeline.from_pretrained(
|
|
24 |
).to(device)
|
25 |
|
26 |
# Load the LoRA trained weights once at the start
|
27 |
-
lora_path = "lora_trained_model.
|
28 |
if os.path.exists(lora_path):
|
29 |
try:
|
30 |
-
|
31 |
-
|
32 |
-
pipeline.load_lora_weights(lora_path) # This automatically applies to the right components
|
33 |
-
print("✅ LoRA weights loaded successfully!")
|
34 |
-
else:
|
35 |
-
print("❌ LoRA weights method not available. Manually loading weights.")
|
36 |
-
# Optionally, you can manually load the weights using keys (refer to your printed keys)
|
37 |
-
# Example: pipeline.model.load_state_dict(torch.load(lora_path))
|
38 |
except Exception as e:
|
39 |
print(f"❌ Error loading LoRA: {e}")
|
40 |
else:
|
41 |
print("⚠️ LoRA file not found! Running base model.")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
43 |
# Ensure GPU allocation in Hugging Face Spaces
|
44 |
@spaces.GPU(duration=65)
|
45 |
def generate_image(prompt: str, seed: int = None):
|
@@ -66,6 +65,3 @@ with gr.Blocks() as demo:
|
|
66 |
output_image = gr.Image(label="Generated Image")
|
67 |
|
68 |
generate_btn.click(generate_image, inputs=[prompt_input, seed_input], outputs=output_image)
|
69 |
-
|
70 |
-
# Launch Gradio App
|
71 |
-
demo.launch()
|
|
|
24 |
).to(device)
|
25 |
|
26 |
# Load the LoRA trained weights once at the start
|
27 |
+
lora_path = "lora_trained_model.safetensors" # Ensure this file is uploaded in the Space
|
28 |
if os.path.exists(lora_path):
|
29 |
try:
|
30 |
+
SD3LoraLoaderMixin.load_lora_into_model(pipeline, lora_path)
|
31 |
+
print("✅ LoRA weights loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
except Exception as e:
|
33 |
print(f"❌ Error loading LoRA: {e}")
|
34 |
else:
|
35 |
print("⚠️ LoRA file not found! Running base model.")
|
36 |
|
37 |
+
# Verify if LoRA is applied
|
38 |
+
for name, param in pipeline.text_encoder.named_parameters():
|
39 |
+
if "lora" in name.lower():
|
40 |
+
print(f"LoRA applied to: {name}, requires_grad={param.requires_grad}")
|
41 |
+
|
42 |
# Ensure GPU allocation in Hugging Face Spaces
|
43 |
@spaces.GPU(duration=65)
|
44 |
def generate_image(prompt: str, seed: int = None):
|
|
|
65 |
output_image = gr.Image(label="Generated Image")
|
66 |
|
67 |
generate_btn.click(generate_image, inputs=[prompt_input, seed_input], outputs=output_image)
|
|
|
|
|
|