DonImages commited on
Commit
8871d09
·
verified ·
1 Parent(s): c868357

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -5
app.py CHANGED
@@ -22,10 +22,7 @@ else:
22
  # Load the Stable Diffusion 3.5 model with lower precision (float16)
23
  model_id = "stabilityai/stable-diffusion-3.5-large"
24
  pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16) # Use float16 precision
25
-
26
- # Check for GPU availability and set device accordingly
27
- device = "cuda" if torch.cuda.is_available() else "cpu"
28
- pipe.to(device) # Use GPU if available, otherwise fallback to CPU
29
 
30
  # Define the path to the LoRA model
31
  lora_model_path = "./lora_model.pth" # Assuming the file is saved locally
@@ -33,7 +30,7 @@ lora_model_path = "./lora_model.pth" # Assuming the file is saved locally
33
  # Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
34
  def load_lora_model(pipe, lora_model_path):
35
  # Load the LoRA weights
36
- lora_weights = torch.load(lora_model_path, map_location=device) # Use correct device
37
 
38
  # Apply weights to the UNet submodule
39
  for name, param in pipe.unet.named_parameters(): # Accessing unet parameters
 
22
  # Load the Stable Diffusion 3.5 model with lower precision (float16)
23
  model_id = "stabilityai/stable-diffusion-3.5-large"
24
  pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16) # Use float16 precision
25
+ pipe.to(device) # Ensuring the model is on the correct device (GPU or CPU)
 
 
 
26
 
27
  # Define the path to the LoRA model
28
  lora_model_path = "./lora_model.pth" # Assuming the file is saved locally
 
30
  # Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
31
  def load_lora_model(pipe, lora_model_path):
32
  # Load the LoRA weights
33
+ lora_weights = torch.load(lora_model_path, map_location=device) # Load LoRA model to the correct device
34
 
35
  # Apply weights to the UNet submodule
36
  for name, param in pipe.unet.named_parameters(): # Accessing unet parameters