Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,6 @@ import torch
|
|
4 |
from diffusers import StableDiffusion3Pipeline
|
5 |
import spaces
|
6 |
import random
|
7 |
-
from peft import PeftModel, get_peft_model
|
8 |
-
|
9 |
-
# Ensure GPU allocation in Hugging Face Spaces
|
10 |
-
@spaces.GPU(duration=65)
|
11 |
-
def generate_image(prompt: str, seed: int = None):
|
12 |
-
"""Generates an image using Stable Diffusion 3.5 with LoRA fine-tuning."""
|
13 |
-
if seed is None:
|
14 |
-
seed = random.randint(0, 100000)
|
15 |
-
generator = torch.manual_seed(seed)
|
16 |
-
|
17 |
-
image = pipeline(prompt, generator=generator).images[0]
|
18 |
-
return image
|
19 |
|
20 |
# Device selection
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -27,22 +15,36 @@ token = os.getenv("HF_TOKEN")
|
|
27 |
# Model ID for SD 3.5 Large
|
28 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
|
29 |
|
30 |
-
# Load Stable Diffusion pipeline
|
31 |
pipeline = StableDiffusion3Pipeline.from_pretrained(
|
32 |
model_repo_id,
|
33 |
torch_dtype=torch_dtype,
|
34 |
use_safetensors=True, # Use safetensors format if supported
|
35 |
).to(device)
|
36 |
|
37 |
-
# Load the LoRA trained weights
|
38 |
lora_path = "lora_trained_model.pt" # Ensure this file is uploaded in the Space
|
39 |
if os.path.exists(lora_path):
|
40 |
lora_state_dict = torch.load(lora_path, map_location=device, weights_only=True)
|
41 |
-
pipeline
|
42 |
print("✅ LoRA weights loaded successfully!")
|
43 |
else:
|
44 |
print("⚠️ LoRA file not found! Running base model.")
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Gradio Interface
|
47 |
with gr.Blocks() as demo:
|
48 |
gr.Markdown("# 🖼️ LoRA Fine-Tuned SD 3.5 Image Generator")
|
|
|
4 |
from diffusers import StableDiffusion3Pipeline
|
5 |
import spaces
|
6 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Device selection
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
15 |
# Model ID for SD 3.5 Large
|
16 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
|
17 |
|
18 |
+
# Load Stable Diffusion pipeline once at the start
|
19 |
pipeline = StableDiffusion3Pipeline.from_pretrained(
|
20 |
model_repo_id,
|
21 |
torch_dtype=torch_dtype,
|
22 |
use_safetensors=True, # Use safetensors format if supported
|
23 |
).to(device)
|
24 |
|
25 |
+
# Load the LoRA trained weights once at the start
|
26 |
lora_path = "lora_trained_model.pt" # Ensure this file is uploaded in the Space
|
27 |
if os.path.exists(lora_path):
|
28 |
lora_state_dict = torch.load(lora_path, map_location=device, weights_only=True)
|
29 |
+
pipeline.load_lora_weights(lora_state_dict) # Load LoRA weights into the pipeline
|
30 |
print("✅ LoRA weights loaded successfully!")
|
31 |
else:
|
32 |
print("⚠️ LoRA file not found! Running base model.")
|
33 |
|
34 |
+
# Ensure GPU allocation in Hugging Face Spaces
|
35 |
+
@spaces.GPU(duration=65)
|
36 |
+
def generate_image(prompt: str, seed: int = None):
|
37 |
+
"""Generates an image using Stable Diffusion 3.5 with LoRA fine-tuning."""
|
38 |
+
if seed is None:
|
39 |
+
seed = random.randint(0, 100000)
|
40 |
+
|
41 |
+
# Create a generator with the seed
|
42 |
+
generator = torch.manual_seed(seed)
|
43 |
+
|
44 |
+
# Generate the image using the pipeline
|
45 |
+
image = pipeline(prompt, generator=generator).images[0]
|
46 |
+
return image
|
47 |
+
|
48 |
# Gradio Interface
|
49 |
with gr.Blocks() as demo:
|
50 |
gr.Markdown("# 🖼️ LoRA Fine-Tuned SD 3.5 Image Generator")
|