Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,10 @@ else:
|
|
14 |
# Load the Stable Diffusion 3.5 model with lower precision (float16)
|
15 |
model_id = "stabilityai/stable-diffusion-3.5-large"
|
16 |
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16) # Use float16 precision
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
# Define the path to the LoRA model
|
20 |
lora_model_path = "./lora_model.pth" # Assuming the file is saved locally
|
@@ -22,7 +25,7 @@ lora_model_path = "./lora_model.pth" # Assuming the file is saved locally
|
|
22 |
# Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
|
23 |
def load_lora_model(pipe, lora_model_path):
|
24 |
# Load the LoRA weights
|
25 |
-
lora_weights = torch.load(lora_model_path, map_location=
|
26 |
|
27 |
# Apply weights to the UNet submodule
|
28 |
for name, param in pipe.unet.named_parameters(): # Accessing unet parameters
|
@@ -50,4 +53,4 @@ iface = gr.Interface(
|
|
50 |
],
|
51 |
outputs="image"
|
52 |
)
|
53 |
-
iface.launch()
|
|
|
14 |
# Load the Stable Diffusion 3.5 model with lower precision (float16)
|
15 |
model_id = "stabilityai/stable-diffusion-3.5-large"
|
16 |
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16) # Use float16 precision
|
17 |
+
|
18 |
+
# Check for GPU availability and set device accordingly
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
pipe.to(device) # Use GPU if available, otherwise fallback to CPU
|
21 |
|
22 |
# Define the path to the LoRA model
|
23 |
lora_model_path = "./lora_model.pth" # Assuming the file is saved locally
|
|
|
25 |
# Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
|
26 |
def load_lora_model(pipe, lora_model_path):
|
27 |
# Load the LoRA weights
|
28 |
+
lora_weights = torch.load(lora_model_path, map_location=device) # Use correct device
|
29 |
|
30 |
# Apply weights to the UNet submodule
|
31 |
for name, param in pipe.unet.named_parameters(): # Accessing unet parameters
|
|
|
53 |
],
|
54 |
outputs="image"
|
55 |
)
|
56 |
+
iface.launch()
|