Testing2 / appCODE.py
DonImages's picture
Update appCODE.py
20271b2 verified
import os
import gradio as gr
import torch
import spaces
import random
from diffusers import StableDiffusion3Pipeline
from diffusers.loaders import SD3LoraLoaderMixin
from safetensors.torch import load_file, save_file
# Ensure GPU allocation for image generation (moved here)
def main():
# Device selection
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if device == "cuda" else torch.float32
# Load Hugging Face token securely
token = os.getenv("HF_TOKEN")
# Model ID for SD 3.5 Large
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
# Convert .pt to .safetensors if needed
lora_pt_path = "lora_trained_model.pt"
lora_safetensors_path = "lora_trained_model.safetensors"
if os.path.exists(lora_pt_path) and not os.path.exists(lora_safetensors_path):
print("πŸ”„ Converting LoRA .pt to .safetensors...")
lora_weights = torch.load(lora_pt_path, map_location="cpu")
save_file(lora_weights, lora_safetensors_path)
print(f"βœ… LoRA saved as {lora_safetensors_path}")
# Load Stable Diffusion 3.5 pipeline with optimized settings
pipeline = StableDiffusion3Pipeline.from_pretrained(
model_repo_id,
torch_dtype=torch_dtype,
use_safetensors=True,
).to(device)
# Load and fuse LoRA weights (optimized method)
if os.path.exists(lora_safetensors_path):
try:
SD3LoraLoaderMixin.load_lora_weights(pipeline, lora_safetensors_path)
pipeline.fuse_lora()
print("βœ… LoRA weights loaded and fused successfully!")
except Exception as e:
print(f"❌ Error loading LoRA: {e}")
else:
print("⚠️ LoRA file not found! Running base model.")
# Ensure LoRA is applied correctly
applied_lora = any("lora" in name.lower() for name, _ in pipeline.text_encoder.named_parameters())
print(f"βœ… LoRA Applied: {applied_lora}")
# Image generation function with GPU decorator
@spaces.GPU(duration=65)
def generate_image(prompt: str, seed: int = None):
"""Generates an image using Stable Diffusion 3.5 with LoRA fine-tuning."""
seed = seed or random.randint(0, 100000)
generator = torch.Generator(device).manual_seed(seed)
return pipeline(prompt, generator=generator).images[0]
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# πŸ–ΌοΈ LoRA Fine-Tuned SD 3.5 Image Generator")
with gr.Row():
prompt_input = gr.Textbox(
label="Enter Prompt",
value="A woman in her 20s with expressive black eyes, graceful face, elegant body, standing on the beach at sunset. Photorealistic, highly detailed."
)
seed_input = gr.Number(label="Seed (optional)", value=None)
generate_btn = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
generate_btn.click(generate_image, inputs=[prompt_input, seed_input], outputs=output_image)
# Launch Gradio app
demo.launch()
if __name__ == "__main__":
main()