Testing2 / app.py
DonImages's picture
Update app.py
11ad404 verified
raw
history blame
2.49 kB
import os
import gradio as gr
import torch
import spaces
import random
from diffusers import StableDiffusion3Pipeline
from diffusers.loaders import SD3LoraLoaderMixin
# Device selection NOTE
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load the Hugging Face token securely
token = os.getenv("HF_TOKEN")
# Model ID for SD 3.5 Large
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
# Load Stable Diffusion pipeline once at the start
pipeline = StableDiffusion3Pipeline.from_pretrained(
model_repo_id,
torch_dtype=torch_dtype,
use_safetensors=True, # Use safetensors format if supported
).to(device)
# Load the LoRA trained weights once at the start
lora_path = "lora_trained_model.pt" # Ensure this file is uploaded in the Space
if os.path.exists(lora_path):
try:
pipeline.load_lora_weights(lora_path) # Use the correct method for loading LoRA weights
print("✅ LoRA weights loaded successfully!")
except Exception as e:
print(f"❌ Error loading LoRA: {e}")
else:
print("⚠️ LoRA file not found! Running base model.")
# Verify if LoRA is applied
for name, param in pipeline.text_encoder.named_parameters():
if "lora" in name.lower():
print(f"LoRA applied to: {name}, requires_grad={param.requires_grad}")
# Ensure GPU allocation in Hugging Face Spaces
@spaces.GPU(duration=65)
def generate_image(prompt: str, seed: int = None):
"""Generates an image using Stable Diffusion 3.5 with LoRA fine-tuning."""
if seed is None:
seed = random.randint(0, 100000)
# Create a generator with the seed
generator = torch.manual_seed(seed)
# Generate the image using the pipeline
image = pipeline(prompt, generator=generator).images[0]
return image
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# 🖼️ LoRA Fine-Tuned SD 3.5 Image Generator")
with gr.Row():
prompt_input = gr.Textbox(label="Enter Prompt", value="A woman in her 20s with expressive black eyes, graceful face, elegant body, standing on the beach at sunset. Photorealistic, highly detailed.")
seed_input = gr.Number(label="Seed (optional)", value=None)
generate_btn = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
generate_btn.click(generate_image, inputs=[prompt_input, seed_input], outputs=output_image)
# Launch the Gradio app
demo.launch()