Testing2 / app.py
DonImages's picture
Update app.py
02a3a52 verified
raw
history blame
2.43 kB
import gradio as gr
import torch
import os
from diffusers import StableDiffusion3Pipeline
from safetensors.torch import load_file
from spaces import GPU # Remove if not in HF Space
# 1. Define model ID and HF_TOKEN (at the VERY beginning)
model_id = "stabilityai/stable-diffusion-3.5-large" # Or your preferred model ID
hf_token = os.getenv("HF_TOKEN") # For private models (set in HF Space settings)
# 2. Initialize pipeline (to None initially)
pipeline = None
# 3. Load Stable Diffusion and LoRA (before Gradio)
try:
if hf_token: # check if the token exists, if not, then do not pass the token
pipeline = StableDiffusion3Pipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
cache_dir="./model_cache" # For caching
)
else:
pipeline = StableDiffusion3Pipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
cache_dir="./model_cache" # For caching
)
lora_filename = "lora_trained_model.safetensors" # EXACT filename of your LoRA
lora_path = os.path.join("./", lora_filename)
if os.path.exists(lora_path):
lora_weights = load_file(lora_path)
text_encoder = pipeline.text_encoder
text_encoder.load_state_dict(lora_weights, strict=False)
print(f"LoRA loaded successfully from: {lora_path}")
else:
print(f"Error: LoRA file not found at: {lora_path}")
exit() # Stop if LoRA is not found
print("Stable Diffusion model loaded successfully!")
except Exception as e:
print(f"Error loading model or LoRA: {e}")
exit() # Stop if model loading fails
# 4. Image generation function (now decorated)
@GPU(duration=65) # ONLY if in a HF Space, remove if not
def generate_image(prompt):
global pipeline
if pipeline is None: # Should not happen, but good to check
return "Error: Model not loaded!"
try:
image = pipeline(prompt).images[0] # Access the first image from the list
return image
except Exception as e:
return f"Error generating image: {e}"
# 5. Gradio interface
with gr.Blocks() as demo:
prompt_input = gr.Textbox(label="Prompt")
image_output = gr.Image(label="Generated Image")
generate_button = gr.Button("Generate")
generate_button.click(
fn=generate_image,
inputs=prompt_input,
outputs=image_output,
)
demo.launch()