File size: 1,769 Bytes
feabc9a
bafa3e3
d985a28
37c7828
 
d985a28
9024a26
 
d985a28
9024a26
d985a28
9024a26
feabc9a
 
9024a26
 
f95ef44
feabc9a
37c7828
9024a26
5120226
9024a26
37c7828
9024a26
f95ef44
37c7828
9024a26
 
 
 
 
 
 
 
 
37c7828
5120226
9024a26
 
 
feabc9a
 
37c7828
9024a26
37c7828
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
from diffusers import StableDiffusion3Pipeline
from huggingface_hub import login
import os
import gradio as gr

# Retrieve the token from the environment variable
token = os.getenv("HF_TOKEN")  # Hugging Face token from the secret
if token:
    login(token=token)  # Log in with the retrieved token
else:
    raise ValueError("Hugging Face token not found. Please set it as a repository secret in the Space settings.")

# Load the Stable Diffusion 3.5 model
model_id = "stabilityai/stable-diffusion-3.5-medium"
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.to("cpu")

# Define the path to the LoRA model
lora_model_path = "https://huggingface.co/spaces/DonImages/Testing2/resolve/main/lora_model.pth"  # LoRA model path

# Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
def load_lora_model(pipe, lora_model_path):
    # Load the LoRA weights (assuming it's a PyTorch .pth file)
    lora_weights = torch.load(lora_model_path, map_location="cpu")

    # Modify this section based on how LoRA is intended to interact with your Stable Diffusion model
    # Here, we just load the weights into the model's parameters (this is a conceptual approach)
    for name, param in pipe.named_parameters():
        if name in lora_weights:
            param.data += lora_weights[name]  # Apply LoRA weights to the parameters

    return pipe  # Return the updated model

# Load and apply the LoRA model weights
pipe = load_lora_model(pipe, lora_model_path)

# Function to generate an image from a text prompt
def generate_image(prompt):
    image = pipe(prompt).images[0]
    return image

# Gradio interface
iface = gr.Interface(fn=generate_image, inputs="text", outputs="image")
iface.launch()