File size: 1,826 Bytes
feabc9a
bafa3e3
d985a28
37c7828
 
d985a28
9024a26
 
d985a28
9024a26
d985a28
9024a26
feabc9a
 
8fed6dd
fc20c03
 
 
 
 
feabc9a
9024a26
37c7828
fc20c03
f95ef44
fc20c03
 
 
9024a26
fc20c03
9024a26
fc20c03
90933cd
9024a26
37c7828
5120226
9024a26
d30f159
 
 
feabc9a
 
d30f159
37c7828
d30f159
 
 
 
 
 
 
 
37c7828
d30f159
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
from diffusers import StableDiffusion3Pipeline
from huggingface_hub import login
import os
import gradio as gr

# Retrieve the token from the environment variable
token = os.getenv("HF_TOKEN")  # Hugging Face token from the secret
if token:
    login(token=token)  # Log in with the retrieved token
else:
    raise ValueError("Hugging Face token not found. Please set it as a repository secret in the Space settings.")

# Load the Stable Diffusion 3.5 model
model_id = "stabilityai/stable-diffusion-3.5-large"
pipe = StableDiffusion3Pipeline.from_pretrained(model_id)  # Removed torch_dtype argument
pipe.to("cpu")  # Ensuring it runs on CPU

# Define the path to the LoRA model
lora_model_path = "./lora_model.pth"  # Assuming the file is saved locally

# Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
def load_lora_model(pipe, lora_model_path):
    # Load the LoRA weights
    lora_weights = torch.load(lora_model_path, map_location="cpu")
    
    # Apply weights to the UNet submodule
    for name, param in pipe.unet.named_parameters():  # Accessing unet parameters
        if name in lora_weights:
            param.data += lora_weights[name]

    return pipe

# Load and apply the LoRA model weights
pipe = load_lora_model(pipe, lora_model_path)

# Function to generate an image from a text prompt
def generate_image(prompt, seed=None):
    generator = torch.manual_seed(seed) if seed is not None else None
    image = pipe(prompt, height=1080, width=1080, generator=generator).images[0]
    return image


# Gradio interface
iface = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Textbox(label="Enter your prompt"),  # For the prompt
        gr.Number(label="Enter a seed (optional)", value=None),  # For the seed
    ],
    outputs="image"
)
iface.launch()