File size: 1,770 Bytes
feabc9a bafa3e3 d985a28 37c7828 d985a28 feabc9a 0e361a4 bafa3e3 feabc9a 37c7828 5120226 37c7828 5120226 feabc9a 37c7828 feabc9a 37c7828 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import torch
from diffusers import StableDiffusion3Pipeline
from huggingface_hub import login
import os
import gradio as gr
# Retrieve the token from the environment variable
token = os.getenv("HF_TOKEN") # Hugging Face token from the secret
if token:
login(token=token) # Log in with the retrieved token
else:
raise ValueError("Hugging Face token not found. Please set it as a repository secret in the Space settings.")
# Load the Stable Diffusion 3.5 model
model_id = "stabilityai/stable-diffusion-3.5-large"
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.to("cuda")
# Define the path to the LoRA model
lora_model_path = "https://huggingface.co/spaces/DonImages/Testing2/resolve/main/lora_model.pth" # LoRA model path
# Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
def load_lora_model(pipe, lora_model_path):
# Load the LoRA weights (assuming it's a PyTorch .pth file)
lora_weights = torch.load(lora_model_path, map_location="cuda")
# Modify this section based on how LoRA is intended to interact with your Stable Diffusion model
# Here, we just load the weights into the model's parameters (this is a conceptual approach)
for name, param in pipe.named_parameters():
if name in lora_weights:
param.data += lora_weights[name] # Apply LoRA weights to the parameters
return pipe # Return the updated model
# Load and apply the LoRA model weights
pipe = load_lora_model(pipe, lora_model_path)
# Function to generate an image from a text prompt
def generate_image(prompt):
image = pipe(prompt).images[0]
return image
# Gradio interface
iface = gr.Interface(fn=generate_image, inputs="text", outputs="image")
iface.launch()
|