File size: 2,336 Bytes
7b1a432
 
 
 
 
30d192f
7b1a432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import gradio as gr
import torch
import os
from diffusers import StableDiffusion3Pipeline
from safetensors.torch import load_file
from spaces import GPU 

# Access HF_TOKEN from environment variables
hf_token = os.getenv("HF_TOKEN")

# Specify the pre-trained model ID
model_id = "stabilityai/stable-diffusion-3.5-large"

# Lazy pipeline initialization
pipeline = None

# Function for image generation
@gr.GPU(duration=65)
def generate_image(prompt):  # Remove lora_file input
    global pipeline
    if pipeline is None:
        try:
            pipeline = StableDiffusion3Pipeline.from_pretrained(
                model_id,
                use_auth_token=hf_token,
                torch_dtype=torch.float16,
                cache_dir="./model_cache"
            )
        except Exception as e:
            print(f"Error loading from cache: {e}")
            pipeline = StableDiffusion3Pipeline.from_pretrained(
                model_id,
                use_auth_token=hf_token,
                torch_dtype=torch.float16,
                local_files_only=False
            )
        pipeline.enable_model_cpu_offload()
        pipeline.enable_attention_slicing()

    # Load and apply LoRA (file is already in the Space)
    lora_filename = "lora_trained_model.safetensors"  # Name of your LoRA file
    lora_path = os.path.join("./", lora_filename)  # Construct the path
    print(f"Loading LoRA from: {lora_path}")

    try:
        if os.path.exists(lora_path):  # check if the file exists
            lora_weights = load_file(lora_path)
            text_encoder = pipeline.text_encoder
            text_encoder.load_state_dict(lora_weights, strict=False)
        else:
            return f"Error: LoRA file not found at {lora_path}"
    except Exception as e:
        return f"Error loading LoRA: {e}"

    try:
        image = pipeline(prompt).images[0]
        return image
    except Exception as e:
        return f"Error generating image: {e}"


# Create the Gradio interface (remove lora_upload)
with gr.Blocks() as demo:
    prompt_input = gr.Textbox(label="Prompt")
    image_output = gr.Image(label="Generated Image")
    generate_button = gr.Button("Generate")

    generate_button.click(
        fn=generate_image,
        inputs=prompt_input,  # Only prompt input now
        outputs=image_output,
    )

demo.launch()