Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import torch
|
2 |
from torch import nn, optim
|
3 |
-
from torchvision import transforms, datasets, models
|
4 |
from torch.utils.data import DataLoader, Dataset
|
|
|
5 |
from PIL import Image
|
6 |
import json
|
7 |
import os
|
@@ -24,9 +24,9 @@ class ImageDescriptionDataset(Dataset):
|
|
24 |
self.metadata = metadata
|
25 |
self.image_names = list(metadata.keys()) # List of image filenames
|
26 |
self.transform = transforms.Compose([
|
27 |
-
transforms.Resize((
|
28 |
transforms.ToTensor(),
|
29 |
-
transforms.Normalize(mean=[0.
|
30 |
])
|
31 |
|
32 |
def __len__(self):
|
@@ -35,76 +35,81 @@ class ImageDescriptionDataset(Dataset):
|
|
35 |
def __getitem__(self, idx):
|
36 |
image_name = self.image_names[idx]
|
37 |
image_path = os.path.join(self.image_folder, image_name)
|
38 |
-
image = Image.open(image_path).convert("RGB")
|
39 |
-
description = self.metadata[image_name]
|
40 |
-
image = self.transform(image)
|
41 |
return image, description
|
42 |
|
43 |
-
# LoRA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
class LoRAModel(nn.Module):
|
45 |
def __init__(self):
|
46 |
super(LoRAModel, self).__init__()
|
47 |
-
self.backbone = models.resnet18(pretrained=True) #
|
48 |
-
|
49 |
-
# Fixing the shape mismatch: Input size to the fc layer should match ResNet output
|
50 |
-
self.fc = nn.Linear(self.backbone.fc.in_features, 100) # 100 is a placeholder for your output
|
51 |
-
|
52 |
-
# If you want to use LoRA, you will implement the low-rank adaptation mechanism here
|
53 |
|
54 |
def forward(self, x):
|
55 |
-
|
56 |
-
x = self.fc(x) # Apply the final fully connected layer
|
57 |
-
return x
|
58 |
|
59 |
-
# Function
|
60 |
def train_lora(image_folder, metadata):
|
61 |
-
print("Starting training process...")
|
62 |
-
|
63 |
-
# Create dataset and
|
64 |
dataset = ImageDescriptionDataset(image_folder, metadata)
|
65 |
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
|
66 |
-
|
67 |
-
# Initialize model, loss, and optimizer
|
68 |
model = LoRAModel()
|
69 |
-
criterion = nn.CrossEntropyLoss() #
|
70 |
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
71 |
-
|
72 |
# Training loop
|
73 |
-
num_epochs = 5
|
74 |
for epoch in range(num_epochs):
|
75 |
print(f"Epoch {epoch + 1}/{num_epochs}")
|
76 |
for batch_idx, (images, descriptions) in enumerate(dataloader):
|
77 |
-
#
|
78 |
-
|
79 |
-
labels = torch.randint(0, 100, (images.size(0),)) # Random labels as a placeholder
|
80 |
|
81 |
# Forward pass
|
82 |
outputs = model(images)
|
83 |
loss = criterion(outputs, labels)
|
84 |
-
|
85 |
# Backward pass
|
86 |
optimizer.zero_grad()
|
87 |
loss.backward()
|
88 |
optimizer.step()
|
89 |
-
|
90 |
-
if batch_idx % 10 == 0:
|
91 |
print(f"Batch {batch_idx}, Loss: {loss.item()}")
|
92 |
|
93 |
-
print("
|
94 |
|
95 |
-
# Gradio
|
96 |
def start_training_gradio():
|
97 |
-
print("
|
98 |
-
metadata = load_metadata(metadata_file)
|
99 |
-
|
|
|
100 |
|
101 |
-
# Gradio interface
|
102 |
demo = gr.Interface(
|
103 |
-
fn=start_training_gradio,
|
104 |
inputs=None,
|
105 |
outputs="text",
|
106 |
-
title="Train LoRA
|
107 |
-
description="
|
108 |
)
|
109 |
|
110 |
demo.launch()
|
|
|
1 |
import torch
|
2 |
from torch import nn, optim
|
|
|
3 |
from torch.utils.data import DataLoader, Dataset
|
4 |
+
from torchvision import transforms, datasets, models
|
5 |
from PIL import Image
|
6 |
import json
|
7 |
import os
|
|
|
24 |
self.metadata = metadata
|
25 |
self.image_names = list(metadata.keys()) # List of image filenames
|
26 |
self.transform = transforms.Compose([
|
27 |
+
transforms.Resize((512, 512)),
|
28 |
transforms.ToTensor(),
|
29 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
30 |
])
|
31 |
|
32 |
def __len__(self):
|
|
|
35 |
def __getitem__(self, idx):
|
36 |
image_name = self.image_names[idx]
|
37 |
image_path = os.path.join(self.image_folder, image_name)
|
38 |
+
image = Image.open(image_path).convert("RGB")
|
39 |
+
description = self.metadata[image_name]
|
40 |
+
image = self.transform(image)
|
41 |
return image, description
|
42 |
|
43 |
+
# LoRA Layer Implementation
|
44 |
+
class LoRALayer(nn.Module):
|
45 |
+
def __init__(self, original_layer, rank=4):
|
46 |
+
super(LoRALayer, self).__init__()
|
47 |
+
self.original_layer = original_layer
|
48 |
+
self.rank = rank
|
49 |
+
self.lora_up = nn.Linear(original_layer.in_features, rank, bias=False)
|
50 |
+
self.lora_down = nn.Linear(rank, original_layer.out_features, bias=False)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
return self.original_layer(x) + self.lora_down(self.lora_up(x))
|
54 |
+
|
55 |
+
# LoRA Model Class
|
56 |
class LoRAModel(nn.Module):
|
57 |
def __init__(self):
|
58 |
super(LoRAModel, self).__init__()
|
59 |
+
self.backbone = models.resnet18(pretrained=True) # Base model
|
60 |
+
self.backbone.fc = LoRALayer(self.backbone.fc) # Replace the final layer with LoRA
|
|
|
|
|
|
|
|
|
61 |
|
62 |
def forward(self, x):
|
63 |
+
return self.backbone(x)
|
|
|
|
|
64 |
|
65 |
+
# Training Function
|
66 |
def train_lora(image_folder, metadata):
|
67 |
+
print("Starting LoRA training process...")
|
68 |
+
|
69 |
+
# Create dataset and dataloader
|
70 |
dataset = ImageDescriptionDataset(image_folder, metadata)
|
71 |
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
|
72 |
+
|
73 |
+
# Initialize model, loss function, and optimizer
|
74 |
model = LoRAModel()
|
75 |
+
criterion = nn.CrossEntropyLoss() # Update this if your task changes
|
76 |
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
77 |
+
|
78 |
# Training loop
|
79 |
+
num_epochs = 5
|
80 |
for epoch in range(num_epochs):
|
81 |
print(f"Epoch {epoch + 1}/{num_epochs}")
|
82 |
for batch_idx, (images, descriptions) in enumerate(dataloader):
|
83 |
+
# Placeholder: Convert descriptions to labels
|
84 |
+
labels = torch.randint(0, 100, (images.size(0),))
|
|
|
85 |
|
86 |
# Forward pass
|
87 |
outputs = model(images)
|
88 |
loss = criterion(outputs, labels)
|
89 |
+
|
90 |
# Backward pass
|
91 |
optimizer.zero_grad()
|
92 |
loss.backward()
|
93 |
optimizer.step()
|
94 |
+
|
95 |
+
if batch_idx % 10 == 0:
|
96 |
print(f"Batch {batch_idx}, Loss: {loss.item()}")
|
97 |
|
98 |
+
print("LoRA training completed.")
|
99 |
|
100 |
+
# Gradio App
|
101 |
def start_training_gradio():
|
102 |
+
print("Loading metadata and preparing dataset...")
|
103 |
+
metadata = load_metadata(metadata_file)
|
104 |
+
train_lora(image_folder, metadata)
|
105 |
+
return "Training completed. Check the model outputs!"
|
106 |
|
|
|
107 |
demo = gr.Interface(
|
108 |
+
fn=start_training_gradio,
|
109 |
inputs=None,
|
110 |
outputs="text",
|
111 |
+
title="Train LoRA Model",
|
112 |
+
description="Fine-tune a model using LoRA for consistent image generation."
|
113 |
)
|
114 |
|
115 |
demo.launch()
|