DonImages commited on
Commit
cb92b08
·
verified ·
1 Parent(s): e0b272c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import json
3
+ import os
4
+ import time
5
+
6
+ # Paths
7
+ image_folder = "Images/" # Folder containing the images
8
+ metadata_file = "descriptions.json" # JSON file with image descriptions
9
+
10
+ # Load metadata
11
+ with open(metadata_file, "r") as f:
12
+ metadata = json.load(f)
13
+
14
+ # Function for training with simple console logging
15
+ def train_lora_with_progress():
16
+ dataset = []
17
+ num_images = len(metadata)
18
+ progress_log = ""
19
+
20
+ # Process images and descriptions
21
+ for i, (image_name, description) in enumerate(metadata.items()):
22
+ image_path = os.path.join(image_folder, image_name)
23
+ if os.path.exists(image_path):
24
+ dataset.append({"image": image_path, "description": description})
25
+ progress_log += f"Processed {i+1}/{num_images}: {image_name}\n"
26
+ else:
27
+ progress_log += f"Warning: {image_name} not found.\n"
28
+ time.sleep(0.5) # Simulate time for each step
29
+
30
+ return progress_log + f"\nTraining completed with {len(dataset)} valid images."
31
+
32
+ # Gradio app
33
+ demo = gr.Interface(
34
+ fn=train_lora_with_progress,
35
+ inputs=None,
36
+ outputs="text",
37
+ title="Train LoRA with Progress Log",
38
+ description="Click below to start training and view live progress logs."
39
+ )
40
+
41
+ demo.launch(enable_queue=True)