DonImages commited on
Commit
b0d8677
·
verified ·
1 Parent(s): b2326ef

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -3
app.py CHANGED
@@ -1,7 +1,41 @@
1
  import gradio as gr
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
  demo.launch()
 
1
  import gradio as gr
2
+ import json
3
+ import os
4
 
5
+ # Paths
6
+ image_folder = "Images/" # Folder containing the images
7
+ metadata_file = "descriptions.json" # JSON file with image descriptions
8
+
9
+ # Load metadata
10
+ with open(metadata_file, "r") as f:
11
+ metadata = json.load(f)
12
+
13
+ # Placeholder function for training LoRA
14
+ def train_lora(image_folder, metadata):
15
+ # Prepare a dataset of image paths and descriptions
16
+ dataset = []
17
+ for image_name, description in metadata.items():
18
+ image_path = os.path.join(image_folder, image_name)
19
+ if os.path.exists(image_path): # Ensure the image file exists
20
+ dataset.append({"image": image_path, "description": description})
21
+ else:
22
+ print(f"Warning: {image_name} not found in {image_folder}")
23
+
24
+ # Placeholder for training logic
25
+ num_images = len(dataset)
26
+ return f"Training LoRA with {num_images} images and their descriptions."
27
+
28
+ # Define Gradio app
29
+ def start_training():
30
+ return train_lora(image_folder, metadata)
31
+
32
+ # Gradio interface
33
+ demo = gr.Interface(
34
+ fn=start_training,
35
+ inputs=None,
36
+ outputs="text",
37
+ title="Train LoRA on Your Dataset",
38
+ description="Click below to start training with the uploaded images and metadata."
39
+ )
40
 
 
41
  demo.launch()