Update app.py
Browse files
app.py
CHANGED
@@ -1,122 +1,66 @@
|
|
|
|
1 |
import torch
|
2 |
-
from
|
3 |
-
from torch.utils.data import DataLoader, Dataset
|
4 |
-
from torchvision import transforms, datasets, models
|
5 |
-
from PIL import Image
|
6 |
-
import json
|
7 |
import os
|
8 |
-
import
|
9 |
-
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
#
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
dataset = ImageDescriptionDataset(image_folder, metadata)
|
71 |
-
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
|
72 |
-
|
73 |
-
# Initialize model, loss function, and optimizer
|
74 |
-
model = LoRAModel()
|
75 |
-
criterion = nn.CrossEntropyLoss() # Update this if your task changes
|
76 |
-
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
77 |
-
|
78 |
-
# Training loop
|
79 |
-
num_epochs = 5 # Adjust the number of epochs based on your needs
|
80 |
-
for epoch in range(num_epochs):
|
81 |
-
print(f"Epoch {epoch + 1}/{num_epochs}")
|
82 |
-
for batch_idx, (images, descriptions) in enumerate(dataloader):
|
83 |
-
# Convert descriptions to a numerical format (if applicable)
|
84 |
-
labels = torch.randint(0, 100, (images.size(0),)) # Placeholder labels
|
85 |
-
|
86 |
-
# Forward pass
|
87 |
-
outputs = model(images)
|
88 |
-
loss = criterion(outputs, labels)
|
89 |
-
|
90 |
-
# Backward pass
|
91 |
-
optimizer.zero_grad()
|
92 |
-
loss.backward()
|
93 |
-
optimizer.step()
|
94 |
-
|
95 |
-
if batch_idx % 10 == 0: # Log every 10 batches
|
96 |
-
print(f"Batch {batch_idx}, Loss: {loss.item()}")
|
97 |
-
|
98 |
-
# Save the trained model
|
99 |
-
model_path = "lora_model.pth"
|
100 |
-
torch.save(model.state_dict(), model_path)
|
101 |
-
print(f"Model saved as {model_path}")
|
102 |
-
|
103 |
-
print("Training completed.")
|
104 |
-
return model_path # Return the path of the saved model
|
105 |
-
|
106 |
-
# Gradio App
|
107 |
-
def start_training_gradio():
|
108 |
-
print("Loading metadata and preparing dataset...")
|
109 |
-
metadata = load_metadata(metadata_file)
|
110 |
-
model_path = train_lora(image_folder, metadata)
|
111 |
-
return model_path # This will return the model file path for download
|
112 |
-
|
113 |
-
# Gradio interface
|
114 |
-
demo = gr.Interface(
|
115 |
-
fn=start_training_gradio,
|
116 |
-
inputs=None,
|
117 |
-
outputs=gr.File(),
|
118 |
-
title="Train LoRA Model",
|
119 |
-
description="Fine-tune a model using LoRA for consistent image generation."
|
120 |
-
)
|
121 |
-
|
122 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusion3Pipeline
|
|
|
|
|
|
|
|
|
4 |
import os
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
# Use the token saved in secrets
|
8 |
+
hf_token = os.getenv("HF_TOKEN")
|
9 |
+
|
10 |
+
# Specify the pre-trained model ID
|
11 |
+
model_id = "stabilityai/stable-diffusion-3.5-large"
|
12 |
+
|
13 |
+
# Global variable for the pipeline (only initialized once)
|
14 |
+
pipeline = None
|
15 |
+
|
16 |
+
# Function for initializing and caching the pipeline
|
17 |
+
def initialize_pipeline():
|
18 |
+
global pipeline
|
19 |
+
if pipeline is None:
|
20 |
+
try:
|
21 |
+
# Load the pipeline with mixed precision (FP16)
|
22 |
+
pipeline = StableDiffusion3Pipeline.from_pretrained(
|
23 |
+
model_id,
|
24 |
+
use_auth_token=hf_token,
|
25 |
+
torch_dtype=torch.float16, # Use FP16 for mixed precision
|
26 |
+
)
|
27 |
+
# Enable model offloading and attention slicing for memory efficiency
|
28 |
+
pipeline.enable_model_cpu_offload()
|
29 |
+
pipeline.enable_attention_slicing()
|
30 |
+
print("Pipeline initialized and cached.")
|
31 |
+
except Exception as e:
|
32 |
+
# Error handling for model loading issues
|
33 |
+
print(f"Error loading the model: {e}")
|
34 |
+
raise RuntimeError("Failed to initialize the model pipeline.")
|
35 |
+
return pipeline
|
36 |
+
|
37 |
+
# Function for image generation, decorated to use GPU
|
38 |
+
@spaces.GPU(duration=65)
|
39 |
+
def generate_image(prompt):
|
40 |
+
pipe = initialize_pipeline() # Initialize the pipeline (only once)
|
41 |
+
# Generate the image using the pipeline
|
42 |
+
try:
|
43 |
+
image = pipe(prompt).images[0]
|
44 |
+
except Exception as e:
|
45 |
+
# Catch errors during image generation (e.g., GPU/Memory errors)
|
46 |
+
print(f"Error during image generation: {e}")
|
47 |
+
raise RuntimeError("Image generation failed.")
|
48 |
+
return image
|
49 |
+
|
50 |
+
# Set up Gradio interface with a simple input for text and output for image
|
51 |
+
interface = gr.Interface(fn=generate_image, inputs="text", outputs="image")
|
52 |
+
|
53 |
+
# Launch the interface
|
54 |
+
interface.launch()
|
55 |
+
|
56 |
+
# Optimize device and dtype handling for CUDA or CPU
|
57 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
58 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
59 |
+
|
60 |
+
# Additional model validation (this is optional, more for debugging)
|
61 |
+
pipe = initialize_pipeline() # Ensure the model is initialized and cached
|
62 |
+
if not pipe or not hasattr(pipe, 'transformer'):
|
63 |
+
raise ValueError("Failed to load the model or the transformer component is missing.")
|
64 |
+
|
65 |
+
# Move the pipeline to the correct device (CUDA or CPU)
|
66 |
+
pipe = pipe.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|