DonImages commited on
Commit
96a3b09
·
verified ·
1 Parent(s): 8d1769c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -9
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import json
3
  import os
 
4
 
5
  # Paths
6
  image_folder = "Images/" # Folder containing the images
@@ -10,32 +11,37 @@ metadata_file = "descriptions.json" # JSON file with image descriptions
10
  with open(metadata_file, "r") as f:
11
  metadata = json.load(f)
12
 
13
- # Placeholder function for training LoRA
14
- def train_lora(image_folder, metadata):
15
- # Prepare a dataset of image paths and descriptions
16
  dataset = []
 
 
 
 
17
  for image_name, description in metadata.items():
18
  image_path = os.path.join(image_folder, image_name)
19
  if os.path.exists(image_path): # Ensure the image file exists
20
  dataset.append({"image": image_path, "description": description})
 
 
 
21
  else:
22
- print(f"Warning: {image_name} not found in {image_folder}")
23
 
24
  # Placeholder for training logic
25
- num_images = len(dataset)
26
- return f"Training LoRA with {num_images} images and their descriptions."
27
 
28
  # Define Gradio app
29
  def start_training():
30
- return train_lora(image_folder, metadata)
31
 
32
  # Gradio interface
33
  demo = gr.Interface(
34
  fn=start_training,
35
  inputs=None,
36
  outputs="text",
37
- title="Train LoRA on Your Dataset",
38
- description="Click below to start training with the uploaded images and metadata."
39
  )
40
 
41
  demo.launch()
 
1
  import gradio as gr
2
  import json
3
  import os
4
+ import time # For simulating progress
5
 
6
  # Paths
7
  image_folder = "Images/" # Folder containing the images
 
11
  with open(metadata_file, "r") as f:
12
  metadata = json.load(f)
13
 
14
+ # Placeholder function for training LoRA with progress tracking
15
+ def train_lora_with_progress(image_folder, metadata, progress=gr.Progress()):
 
16
  dataset = []
17
+ num_images = len(metadata)
18
+ completed = 0
19
+
20
+ # Start processing images
21
  for image_name, description in metadata.items():
22
  image_path = os.path.join(image_folder, image_name)
23
  if os.path.exists(image_path): # Ensure the image file exists
24
  dataset.append({"image": image_path, "description": description})
25
+ completed += 1
26
+ progress(completed / num_images, f"Processed {completed}/{num_images} images: {image_name}")
27
+ time.sleep(0.5) # Simulating processing time
28
  else:
29
+ progress(completed / num_images, f"Warning: {image_name} not found in {image_folder}")
30
 
31
  # Placeholder for training logic
32
+ return f"Training completed with {len(dataset)} valid images."
 
33
 
34
  # Define Gradio app
35
  def start_training():
36
+ return train_lora_with_progress(image_folder, metadata)
37
 
38
  # Gradio interface
39
  demo = gr.Interface(
40
  fn=start_training,
41
  inputs=None,
42
  outputs="text",
43
+ title="Train LoRA with Progress",
44
+ description="Click below to start training with the uploaded images and metadata. Progress will be displayed live."
45
  )
46
 
47
  demo.launch()