Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,11 @@ import gradio as gr
|
|
11 |
image_folder = "Images/"
|
12 |
metadata_file = "descriptions.json"
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Custom Dataset Class
|
16 |
class ImageDescriptionDataset(Dataset):
|
@@ -83,14 +88,15 @@ def train_lora(image_folder, metadata):
|
|
83 |
|
84 |
print("Training completed.")
|
85 |
|
86 |
-
#
|
87 |
-
def
|
88 |
print("Preparing dataset...")
|
|
|
89 |
return train_lora(image_folder, metadata)
|
90 |
|
91 |
# Gradio interface
|
92 |
demo = gr.Interface(
|
93 |
-
fn=
|
94 |
inputs=None,
|
95 |
outputs="text",
|
96 |
title="Train LoRA on Your Dataset",
|
|
|
11 |
image_folder = "Images/"
|
12 |
metadata_file = "descriptions.json"
|
13 |
|
14 |
+
# Define the function to load metadata
|
15 |
+
def load_metadata(metadata_file):
|
16 |
+
with open(metadata_file, 'r') as f:
|
17 |
+
metadata = json.load(f)
|
18 |
+
return metadata
|
19 |
|
20 |
# Custom Dataset Class
|
21 |
class ImageDescriptionDataset(Dataset):
|
|
|
88 |
|
89 |
print("Training completed.")
|
90 |
|
91 |
+
# Gradio app function to load metadata and start training
|
92 |
+
def start_training_gradio():
|
93 |
print("Preparing dataset...")
|
94 |
+
metadata = load_metadata(metadata_file) # Load metadata
|
95 |
return train_lora(image_folder, metadata)
|
96 |
|
97 |
# Gradio interface
|
98 |
demo = gr.Interface(
|
99 |
+
fn=start_training_gradio, # Use the new function name here
|
100 |
inputs=None,
|
101 |
outputs="text",
|
102 |
title="Train LoRA on Your Dataset",
|