File size: 1,190 Bytes
18b77df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5704661
 
 
 
 
 
 
 
 
 
 
 
 
18b77df
 
 
 
 
 
 
 
 
 
5704661
18b77df
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
from embedchain import Pipeline as App
import gradio as gr

os.environ["GOOGLE_API_KEY"] = "AIzaSyBbruzn10nez-0a-_60TA9R9h6qumLD1Es"

app = App.from_config(config={
    "llm": {
        "provider": "google",
        "config": {
            "model": "gemini-pro",
            "temperature": 0.5,
            "max_tokens": 1000,
            "top_p": 1,
            "stream": False,
            "template": """
                Use the following pieces of context to answer the query at the end.
                If you don't know the answer, just say that you don't know, don't try to make up an answer.

                $context

                Query: $query

                Helpful Answer:
            """,
            "system_prompt": """
                Act as William Shakespeare. Answer the following questions in the style of William Shakespeare.
            """
        },
    },
    "embedder": {
        "provider": "google",
        "config": {
            "model": "models/embedding-001",
        },
    },
})

app.add("https://www.forbes.com/profile/elon-musk")

def query(message, history):
    return app.chat(message)


demo = gr.ChatInterface(query)

demo.launch()