import streamlit as st import numpy as np import matplotlib.pyplot as plt import random from scipy.stats import entropy as scipy_entropy import time import imageio from datetime import datetime st.set_page_config(layout="wide") # --- ПАРАМЕТРЫ --- seqlen = 60 min_run, max_run = 1, 2 ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0} bases = ['A', 'C', 'G', 'T'] # --- ФУНКЦИИ --- def find_local_min_runs(profile, min_run=1, max_run=2): result = [] N = len(profile) i = 0 while i < N: run_val = profile[i] run_length = 1 while i + run_length < N and profile[i + run_length] == run_val: run_length += 1 if min_run <= run_length <= max_run: result.append((i, i + run_length - 1, run_val)) i += run_length return result def bio_mutate(seq): r = random.random() if r < 0.70: idx = random.randint(0, len(seq)-1) orig = seq[idx] prob = random.random() if orig in 'AG': newbase = 'C' if prob < 0.65 else random.choice(['T', 'C']) elif orig in 'CT': newbase = 'G' if prob < 0.65 else random.choice(['A', 'G']) else: newbase = random.choice([b for b in bases if b != orig]) seq = seq[:idx] + newbase + seq[idx+1:] elif r < 0.80: idx = random.randint(0, len(seq)-1) ins = ''.join(random.choices(bases, k=random.randint(1, 3))) seq = seq[:idx] + ins + seq[idx:] if len(seq) > seqlen: seq = seq[:seqlen] elif r < 0.90: if len(seq) > 4: idx = random.randint(0, len(seq)-2) dell = random.randint(1, min(3, len(seq)-idx)) seq = seq[:idx] + seq[idx+dell:] else: if len(seq) > 10: start = random.randint(0, len(seq)-6) end = start + random.randint(3,6) subseq = seq[start:end][::-1] seq = seq[:start] + subseq + seq[end:] while len(seq) < seqlen: seq += random.choice(bases) return seq[:seqlen] def compute_autocorr(profile): profile = profile - np.mean(profile) result = np.correlate(profile, profile, mode='full') result = result[result.size // 2:] norm = np.max(result) if np.max(result) != 0 else 1 return result[:10]/norm def compute_entropy(profile): vals, counts = np.unique(profile, return_counts=True) p = counts / counts.sum() return scipy_entropy(p, base=2) # --- UI --- st.title("🔴 Живой эфир мутаций ДНК") start = st.button("▶️ Старт эфира") stop = st.checkbox("⏹️ Остановить") plot_placeholder = st.empty() if start: seq = ''.join(random.choices(bases, k=seqlen)) stat_bist_counts = [] stat_entropy = [] step = 0 while True: if stop: st.warning("⏹️ Эфир остановлен пользователем.") break if step != 0: seq = bio_mutate(seq) torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq]) runs = find_local_min_runs(torsion_profile, min_run, max_run) stat_bist_counts.append(len(runs)) ent = compute_entropy(torsion_profile) stat_entropy.append(ent) acorr = compute_autocorr(torsion_profile) fig, axs = plt.subplots(3, 1, figsize=(10, 8)) plt.subplots_adjust(hspace=0.45) axs[0].plot(torsion_profile, color='royalblue') for start_, end_, val in runs: axs[0].axvspan(start_, end_, color="red", alpha=0.3) axs[0].set_ylim(-200, 200) axs[0].set_title(f"Шаг {step}: {seq}") axs[0].set_ylabel("Торсионный угол") axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4) axs[1].set_ylabel("Биомашины") axs[1].set_title("Количество машин") axs[2].bar(np.arange(6), acorr[:6], color='teal') axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}") axs[2].set_xlabel("Лаг") plot_placeholder.pyplot(fig) plt.close(fig) step += 1 time.sleep(0.3)